Studies of Viscoelasticity with the QCM

Diethelm Johannsmann

Institute of Physical Chemistry, Clausthal University of Technology,
Arnold-Sommerfeld-Str. 4, 38678 Clausthal-Zellerfeld, Germany
johannsmann@pc.tu-clausthal.de

1 Introduction ... 52
2 Complex Resonance Frequencies 56
3 Assumptions of the Standard Model 59
4 Wave Equations and Continuity Conditions: The Mathematical Approach 61
5 The QCM as an Acoustic Reflectometer: The Optical Approach 65
6 Equivalent Circuits: The Electrical Approach 69
7 Relation Between the Frequency Shift and the Load Impedance 75
8 Layered Systems within the Small-Load Approximation 78
 8.1 Semi-infinite Viscoelastic Medium 78
 8.1.1 The Sheet-Contact Model 80
 8.1.2 Nematic Liquid Crystals 80
 8.1.3 Colloidal Dispersions 81
 8.2 Viscoelastic Film in Air 82
 8.2.1 Purely Inertial Loading 82
 8.2.2 Viscoelastic Film 82
 8.2.3 Derivation of Viscoelastic Constants 84
 8.3 Viscoelastic Film in Liquid 86
 8.3.1 Physical Interpretation of the Sauerbrey Thickness 87
 8.3.2 Comparison of Optical and Acoustic Reflectometry 88
 8.3.3 Information Contained in the D/ν Ratio 89
 8.3.4 Slip .. 91
 8.3.5 Roughness at the Film–Liquid Interface 92
 8.4 Two Viscoelastic Films in Air 93
 8.5 Two Viscoelastic Films in Liquid 93
9 Perturbation Analysis 93
10 Concluding Remarks 99
Appendix ... 100
A Derivation of the Butterworth–van Dyke Equivalent Circuit 100
References ... 107
Abstract The chapter summarizes the standard model of how acoustic multilayers interact with a quartz crystal microbalance (QCM). In a first step, it is shown how the three formulations around (the mathematical description, the description in terms of acoustic reflectivities, and the equivalent circuit) model correspond to each other. Special emphasis is given to the small-load approximation, which states that the shifts of frequency and bandwidth are about equal to the real and the imaginary parts of the stress–speed ratio (the load) at the crystal surface. The (laterally averaged) stress–speed ratio can be computed for many types of samples (including anisotropic and heterogeneous materials). The small-load approximation is therefore of outstanding importance when employing the QCM in complex environments. The second part of the chapter provides the predictions of the standard model for various geometries. This includes the discussion of slip, of the comparison of optical and acoustic thickness, of electrode effects, of the frequency dependence of the viscoelastic parameters, and of the consequences of a finite contact area. Viscoelastic modeling of QCM data has some pitfalls, which are pointed out. A separate section is devoted to the shortcomings of the small-load approximation (which can be very noticeable) and the amendments to the model accounting for these.

Keywords Acoustic multilayers · Equivalent circuits · Quartz crystal microbalance · Quartz crystal resonator · Viscoelasticity

Abbreviations

A Area
a Amplitude of oscillation at the crystal surface
b Slip length
c Speed of sound, \(c = (G/\rho)^{1/2} \)
C1 Motional capacitance
C0 Electrical (parallel) capacitance
D Dissipation, \(D = Q^{-1} \)
d Thickness
d0 Thickness of the electrode
d1 Thickness of the film
dq Thickness of the crystal, \(dq = cq/(2f_f) \)
d26 Piezoelectric strain coefficient, \(d_{26} = 3.1 \times 10^{-12} \) m V\(^{-1}\)
e26 Piezoelectric stress coefficient, \(e_{26} = d_{26}G_q = 9.65 \times 10^{-2} \) C m\(^{-2}\)
e as an index: Electrode
F Force
Fex External force
f as an index: Film (exception: \(f_f \), frequency of the fundamental)
f Frequency
fr Resonance frequency (real part)
f0 Resonance frequency in reference state
fr Resonance complex frequency, \(fr = f_f + i\Gamma \)
f0 Resonance complex frequency in reference state
f1 A parameter close to the resonance frequency of the fundamental
G Shear modulus, \(G = G' + iG'' \)
Gq Shear modulus of AT-cut quartz, \(G_q \approx 29.3 \times 10^9 \) Pa
hq Half of the thickness of the crystal, \(h_q = dq/2 \)
h Half of the thickness of a layer
iel Electrical current