Comparison Between Two Languages Used to Express Planning Goals: CTL and E_{AGLE}

Wei Huang1, Zhonghua Wen1,2, Yunfei Jiang1, and Aixiang Chen1

1 Software Research Institute, Sun Yat-sen University
Guangzhou, Guangdong 510275, China
huangbodao@yahoo.com.cn

2 College of Information Engineering, Xiangtan University
Xiangtan, Hunan 411105, China
zhonghua@xtu.edu.cn

Abstract. The extended goals in non-deterministic domains are often expressed in temporal logic, particularly in CTL and E_{AGLE}. No work has given a formal comparison between E_{AGLE} and CTL on semantics, though it is said that the capability of representing the “intentional” aspects of goals and the possibility of dealing with failure are the main new features of E_{AGLE} w.r.t. CTL.

According to the formal semantics for E_{AGLE} and CTL, we prove that all the E_{AGLE} formulas in which only LV_1 operators (i.e. the operators representing the “intentional” aspects of goals) appear and some E_{AGLE} formulas including LV_2 operators (i.e. the operators dealing with failure and qualitative preferences) can be replaced by some CTL formulas without any change on semantics. Finally, we also find some basic and important goals in non-deterministic domains that exceed the expressive ability of E_{AGLE}.

1 Introduction

Unlike classical planning [12], planning for extended goals in non–deterministic domains (e.g., robotics, scheduling, and control) is required to generate plans that satisfy conditions on their whole execution paths in order to deal with non–determinism and possible failures. Planning based on Markov Decision Processes, i.e. MDP–based planning [7,8] and planning based on model checking [3,4,5] are two main approaches to planning for extended goals in non-deterministic domains. In the former approach, planning goals are represented by means of utility functions; while in the latter approach, planning goals are expressed by formulas in temporal logic, particularly in CTL [6] and E_{AGLE} [5].

Though it is said that the capability of representing the “intentional” aspects of goals and the possibility of dealing with failure are the main new features of E_{AGLE} w.r.t. CTL in [5], little research has been devoted to the formal comparison between E_{AGLE} and CTL on semantics. In this paper we prove that all the E_{AGLE} formulas in which only LV_1 operators (i.e. the operators representing the “intentional” aspects of goals) appear can be replaced by some
Comparison Between Two Languages Used to Express Planning Goals

CTL formulas without any change on semantics, so can some E_AG_LE formulas including LV_2 operators (i.e. the operators dealing with failure and qualitative preferences). In addition, we find that some CTL formulas can not be expressed in E_AG_LE. Our purpose is not suggesting designers of systems have a choice between E_AG_LE and CTL. Actually, E_AG_LE and CTL have different features.

This paper is structured as follows. Section 2 illustrates the basic concepts of planning for extended goals in non-deterministic domains, and presents the formal semantics for E_AG_LE formulas and CTL formulas. The core of the paper, i.e. section 3 gives a formal comparison between E_AG_LE and CTL on semantics, and shows some limitations of the expressive power of E_AG_LE language. Section 4 concludes the paper by presenting some possibilities for further work.

2 Background

In this section, we briefly illustrate some definitions of planning for extended goals in non-deterministic domains [3] that are relevant to our work, and review the semantics for CTL formulas and E_AG_LE formulas over a Kripke structure [3]–[5]. Some examples of these definitions can be found in [3] and [5].

2.1 Planning for Extended Goals in Non-deterministic Domains

Following [3], a non-deterministic planning domain D is a tuple (B, Q, A, \rightarrow), where B is a finite set of basic propositions, $Q \subseteq 2^B$ is the set of states, A is the finite set of actions, and $\rightarrow \subseteq Q \times A \times Q$ is the transition relation. $q \rightarrow a q'$ denotes $(q, a, q') \in \rightarrow$. The relation \rightarrow is required to be total, i.e. for every $q \in Q$ there is some $a \in A$ and $q' \in Q$ such that $q \rightarrow a q'$.

In planning for extended goals, actions specified by plans do not only depend on the current state of the domain. The sequence of states that have appeared in the plan execution (i.e. the execution context) must be taken into account.

Definition 1. A plan for a domain D is a tuple $\pi = \langle C, c_0, act, ctxt \rangle$, where C is a set of contexts, $c_0 \in C$ is the initial context, $act : Q \times C \rightarrow A$ is the action function, and $ctxt : Q \times C \times Q \rightarrow C$ is the context function.

A plan π is executable if, whenever $act(q, c) = a$ and $ctxt(q, c, q') = c'$, then $(q, a, q') \in \rightarrow$. A plan π is complete if, whenever $act(q, c) = a$ and $(q, a, q') \in \rightarrow$, then there is some context c' such that $ctxt(q, c, q') = c'$ and $act(q', c')$ is defined. In the following discussion, we consider only plans that are executable and complete.

In fact, any $c \in C$ represents a class of sequences of states. To each class correspond the already accomplished subgoals.

Definition 2. The execution structure of plan π in a domain D from state q_0 is the structure $K = \langle S, R, L \rangle$, where $S = \{ (q, c) | act(q, c) \text{ is defined} \}$, $R = \{ ((q, c), (q', c')) \in S \times S | q \rightarrow a q' \text{ with } a = act(q, c) \text{ and } c' = ctxt(q, c, q') \}$, $L(q, c) = \{ b | b \in q \}$.