Challenges to the enigma of γ-secretase and to Alzheimer’s disease

Takeshi Iwatsubo

Our interest in Alzheimer’s disease (AD) and in γ-secretase, a mysterious and fascinating machinery for the production of amyloid β peptides (Aβ), was aroused by the in vitro demonstration that Aβ ending at position 42 (Aβ42) forms amyloid fibrils much faster than Aβ40 (Jarrett et al. 1993), the latter being the predominant Aβ species produced by cells. Owing much to the groundbreaking invention by Drs. Nobu Suzuki and Asano Asami of the monoclonal antibodies that discriminate the C-terminal clip-site structures of Aβ40 and Aβ42 (Suzuki et al. 1994), we were able to visualize these different Aβ species in the brain tissues of patients with AD and Down’s syndrome, showing that Aβ42 deposition, typically as diffuse plaques, is one of the earliest changes in the “Alzheimerization” of human brains (Fig. 1; Iwatsubo et al. 1994).

Important discoveries in the genetics of familial AD consolidated the significance of Aβ42 in AD: mutations in APP (Suzuki et al. 1994) and presenilin (PS) genes enhance the production of Aβ42 by shifting the preferred γ-secretase cleavage site from position 40 to 42, resulting in an increase in Aβ deposition in brains (Duff et al. 1996: Borchelt et al. 1996). Subsequently, a series of insightful studies, i.e., showing APP metabolism in PS1 KO cells (De Strooper et al. 1998), elucidating the role of the two intramembrane aspartates in PS1 (Wolfe et al. 1999), and photocrosslinking of PS1 fragments with transition-state analogue γ-secretase inhibitors (Li et al. 2000), unequivocally demonstrated that PS polypeptide comprises the catalytic center of γ-secretase, which is responsible for the intramembrane proteolysis of APP, Notch and other type I membrane

Fig. 1. Deposition of Aβ42 precedes that of Aβ40 in Alzheimerization of human brains. Sections from frontal cortices from patients with Down’s syndrome at young [31 y.o. (years old), A and B], middle (44 y.o., C and D) and old (57 y.o., E and F) ages were immunostained for Aβ42 (A, C and E) or Aβ40 (B, D and F)

1 Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan

Jucker et al.
Alzheimer: 100 Years and Beyond
© Springer-Verlag Berlin Heidelberg 2006