Chapter 9

Application to Gradability

9.1 General Descent Theory

Let \mathcal{A} and \mathcal{B} be two categories and let $F : \mathcal{A} \to \mathcal{B}$ be a functor. In the case where \mathcal{A} and \mathcal{B} are additive categories, we assume that F is an additive functor. Following the classical descent theory (see [115]) we can introduce a descent theory relative to the functor F. Consider an object $N \in \mathcal{B}$. We have the following problems.

i) \textit{Existence of F-descent objects} : does an object $M \in \mathcal{A}$ exist such that $N \cong F(M)$?

ii) \textit{Classification} : if such an F-descent object exists, classify (up to isomorphism) all objects M for which $N \cong F(M)$.

9.1.1 Remarks

i) If the functor F is an equivalence of categories, then for any $N \in \mathcal{B}$ there exists an unique (up to isomorphism) F-descent object.

ii) Assume that we have two functors $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{C}$. If for $Z \in \mathcal{C}$ there exists a $G \circ F$-descent object $X \in \mathcal{A}$, then $F(X)$ is a G-descent object for Z.

iii) If F commutes with finite (arbitrary) coproducts or products, then any finite (arbitrary) coproduct or product of F-descent objects is also an F-descent object.

iv) Assume that \mathcal{A} and \mathcal{B} are abelian categories and F is a faithful and exact functor which preserves isomorphisms. If $M \in \mathcal{B}$ is a simple object and $N \in \mathcal{A}$ is an F-descent object for M, then N is simple in \mathcal{A}. Indeed, if $i : X \to N$ is a non-zero monomorphism in \mathcal{A}, then $F(i) : F(X) \to F(N) \cong M$ is a nonzero monomorphism,

© Springer-Verlag Berlin Heidelberg 2004
therefore $F(N) \simeq M$. Since M is simple we see that $F(i)$ is an isomorphism, and then so is i. Thus N is a simple object of \mathcal{A}.

9.1.2 Example

1. Let R and S be two rings and $\phi : R \to S$ be a ring morphism. Let $\mathcal{A} = R\text{-mod}$ and $\mathcal{B} = S\text{-mod}$ be the categories of modules. We have the following three natural functors:

- $S \otimes_R - : R\text{-mod} \to S\text{-mod}$ (the induced functor)
- $\text{Hom}_{R}(RS, -) : R\text{-mod} \to S\text{-mod}$ (the coinduced functor)
- $\phi_* : S\text{-mod} \to R\text{-mod}$ (the restriction of scalars)

When $S = l, R = k$ and l is a commutative faithfully flat k-algebra, then the descent theory relative to the induced functor is exactly the classical descent theory.

2. Assume that $R \subseteq S$ is a ring inclusion. Then the descent theory relative to the functor ϕ_* (here $\phi : R \to S$ is the inclusion morphism) is exactly the problem of extending the module structure, i.e. of investigating whether for $M \in R\text{-mod}$ there exists a structure of an S-module on M which by the restriction of scalars to R gives exactly the initial R-module structure on M. In particular, if $S = \bigoplus_{\sigma \in G} S_{\sigma}$ is a G-strongly graded ring and $R = S_e$, we obtain the theory of extending modules given in Section 4.7.

3. Let $R = \bigoplus_{\sigma \in G} R_\sigma$ be a G-graded ring. We consider the forgetful functor $U : R\text{-gr} \to R\text{-mod}$. If $M \in R\text{-mod}$ and there exists an U-descent object $N \in R\text{-gr}$ for M, i.e. $U(N) \simeq M$, then M is called a gradable module. If G is a finite group, we can consider the smash product $\tilde{R} \# G$ and the natural morphism $\eta : R \to \tilde{R} \# G$ (see Chapter 7). By Proposition 7.3.10, $M \in R\text{-mod}$ is gradable if and only if M has an extending relative to the morphism η.

Using the structure of gr-injective modules (Section 2.8) we have the following.

9.1.3 Proposition

Let G be a finite group, R a G-graded ring and Q an injective R-module. The following assertions are equivalent.

i. Q is gradable.

ii. There exists an injective R_e-module N such that $Q \simeq \text{Coind}(N) = \text{Hom}_{R_e}(R, N)$ as R-modules.