Certain alternating sums of operators

In this chapter we will deal with alternating sums

\[
\begin{align*}
H^\frac{1}{2} XK^\frac{1}{2} \\
H^\frac{1}{2} XK^\frac{3}{2} - H^\frac{3}{2} XK^\frac{1}{2} \\
H^\frac{1}{2} XK^\frac{1}{2} - H^\frac{1}{2} XK^\frac{3}{2} + H^\frac{3}{2} XK^\frac{1}{2} \\
H^\frac{1}{2} XK^\frac{1}{2} - H^\frac{1}{2} XK^\frac{3}{2} + H^\frac{3}{2} XK^\frac{3}{2} - H^\frac{1}{2} XK^\frac{1}{2} \\
\cdots
\end{align*}
\]

\[
\begin{align*}
XX - HX \\
XX - H^\frac{1}{2} XK^\frac{1}{2} + HX \\
XX - H^\frac{1}{2} XK^\frac{3}{2} + H^\frac{3}{2} XK^\frac{1}{2} - HX \\
XX - H^\frac{1}{2} XK^\frac{1}{2} + H^\frac{3}{2} XK^\frac{3}{2} - H^\frac{1}{2} XK^\frac{1}{2} + HX \\
\cdots
\end{align*}
\]

and investigate behavior of unitarily invariant norms of these operators such as mutual comparison, uniform bounds (independent of \(n, m \)), monotonicity and so on (in §8.2 and §8.3). For convenience we set

\[
\begin{align*}
A(n) &= \sum_{k=1}^{n} (-1)^{k-1} H_{\frac{k}{n+1}} XK_{\frac{n+1-k}{n+1}} & (n = 1, 2, 3, \cdots), \\
B(m) &= \sum_{k=0}^{m-1} (-1)^{k} H_{\frac{k}{m-1}} XK_{\frac{m-1-k}{m-1}} & (m = 2, 3, 4, \cdots),
\end{align*}
\]

and these notations will be kept throughout. We note

\[
B(m) = \begin{cases}
HX + XK - A(m-2) & \text{for } m = 3, 5, 7, \cdots, \\
-HX + XK - A(m-2) & \text{for } m = 4, 6, 8, \cdots.
\end{cases} \quad (8.1)
\]

The nature of the above two series of operators depends strongly on parities of \(n \) and \(m \), and it is quite obvious that we will have to treat odd and even cases separately.
8.1 Preliminaries

For $n = 1, 2, \cdots$ and $m = 2, 3, \cdots$ we set

$$a_n(s, t) = \sum_{k=1}^{n} (-1)^{k-1} s^{k-1} t^{n-k}$$
and

$$b_m(s, t) = \sum_{k=0}^{m-1} (-1)^{k} s^{m-k} t^{k}$$

$(s, t \geq 0)$ as scalar “means” corresponding to $A(n)$ and $B(m)$. For $s, t > 0$ we compute

$$a_n(s, t) = \frac{s^{n+1}}{1 + \left(\frac{s}{t}\right)^{\frac{1}{n+1}}} \left(1 - (-1)^n \left(\frac{s}{t}\right)^{\frac{n}{n+1}}\right) = \frac{t^{1/n+1}}{1 + \left(\frac{s}{t}\right)^{\frac{1}{n+1}}} \left(1 - (-1)^n \left(\frac{s}{t}\right)^{\frac{n}{n+1}}\right)$$

$$= \left(\frac{s}{t}\right)^{\frac{1}{n+1}} \times \frac{\left(\frac{s}{t}\right)^{\frac{-1}{n+1}} - (-1)^n \left(\frac{s}{t}\right)^{\frac{1}{n+1}}}{\left(\frac{s}{t}\right)^{\frac{-1}{n+1}} + \left(\frac{s}{t}\right)^{\frac{1}{n+1}}}$$

$$= \left(st\right)^{\frac{1}{n+1}} \times \frac{\left(\frac{s}{t}\right)^{\frac{-1}{n+1}} - (-1)^n \left(\frac{s}{t}\right)^{\frac{1}{n+1}}}{\left(\frac{s}{t}\right)^{\frac{-1}{n+1}} + \left(\frac{s}{t}\right)^{\frac{1}{n+1}}}$$

Note that the denominator can be always expressed in terms of the hyperbolic cosine function while for the numerator the hyperbolic sine function is also needed for n even. Exactly the same computations yield

$$b_m(s, t) = (st)^{\frac{1}{m+1}} \times \frac{\left(\frac{s}{t}\right)^{\frac{-1}{m+1}} - (-1)^m \left(\frac{s}{t}\right)^{\frac{1}{m+1}}}{\left(\frac{s}{t}\right)^{\frac{-1}{m+1}} + \left(\frac{s}{t}\right)^{\frac{1}{m+1}}}$$

These formulas will be freely and repeatedly used. We note the homogeneity

$$a_n(rs, rt) = ra_n(s, t), \quad b_m(rs, rt) = rb_m(s, t)$$

(with $r \geq 0$) and

$$a_n(t, s) = (-1)^{n+1} a_n(s, t), \quad b_m(t, s) = (-1)^{m+1} b_m(s, t)$$

(see Proposition 8.2, (iii)).

We will repeatedly make use of the positive definiteness of the following functions (see §6.3, 1):

$$\frac{1}{\cosh(\alpha x)}, \quad \frac{\cosh(\beta x)}{\cosh(\alpha x)}, \quad \frac{\sinh(\beta x)}{\sinh(\alpha x)}$$

with $0 < \beta < \alpha$ (as was done in preceding chapters). The next observation is also useful.