Order-k Voronoi diagrams, k-sections, and k-sets

Dominique Schmitt and Jean-Claude Spehner

Laboratoire MAGE, Université de Haute-Alsace
4, rue des Frères Lumière, 68093 Mulhouse Cedex, France
{D.Schmitt, JC.Spehner}@univ-mulhouse.fr

Abstract. In this paper we characterize all-dimensional faces of order-k Voronoi diagrams. First we introduce the notion of k-section to give a precise definition of these faces. Then, we characterize the unbounded faces by extending the classical notion of k-set. Finally, by studying some relations between k-sections, we give a new proof of the size of order-k Voronoi diagrams in the plane.

1 Introduction

Let S be a set of n sites in the d-dimensional Euclidean space E and let P be a subset of k sites of S ($k \in \{1, \ldots, n-1\}$). The set of points of E closer to each site of P than to any other site of S is either empty or a region of E. In this later case the region is called the order-k Voronoi region of P. The set of order-k Voronoi regions of all subsets of k sites of S is called the order-k Voronoi diagram of S.

This diagram has first been treated by Miles [6] and has been introduced in computational geometry by Shamos and Hoey [10]. The construction of the order-k Voronoi diagram leads to efficient algorithms in various applications such as k nearest neighbor search, data clustering, ... In the numerous papers that have been published on the subject [2] [7], only order-k Voronoi regions are studied. However, the boundaries of these regions intersect and, in order to study the partition of E generated by the order-k Voronoi diagram, it is necessary to consider independently all the i-dimensional faces of the diagram, $i \in \{0, \ldots, d\}$.

In this paper we show how the notion of k-section can be used to explicitly define the faces of the order-k Voronoi diagram. The adjacency relations between these faces are also determined by a simple relation between their defining k-sections. Furthermore we show how the well known notion of k-set which characterizes unbounded order-k Voronoi regions can be generalized to characterize all-dimensional unbounded order-k Voronoi faces. We give all these results in the most general case where any number of sites may be coplanar or cospherical.

Lee [5] has shown that the size of the order-k Voronoi diagram of a set of n sites in the plane is in $O(k(n-k))$. The properties described in this paper allow us to give a new proof of this result.

2 The order-k Voronoi faces

Given a set S of n sites in the d-dimensional Euclidean space E, the construction of the order-k Voronoi diagram of S consists in finding, for every point x of E, the set P of k nearest sites of x. If the set P exists, x is the center of a sphere whose interior contains the k sites of P but no other site of S. Such a set does not exist if the k^{th} and $(k+1)^{th}$ nearest sites of x are at the same distance from x. In this case, x is the center of a sphere that passes through a set Q of sites and whose interior contains a set P of sites such that $|P| < k < |P| + |Q|$. This leads to the following definitions:

A k-section of S is a couple (P, Q) of subsets of S for which there exists an open ball ω with boundary $\delta(\omega)$ such that $P = \omega \cap S$, $Q = \delta(\omega) \cap S$, and such that $|P| = k$ if Q is empty and $|P| < k < |P| + |Q|$ otherwise. The center of ω is called a center of the k-section (P, Q) and the set $f_P(Q)$ of centers of (P, Q) is called an order-k Voronoi face.

Thus, by denoting $d(x, T)$ (resp. $d_{\text{max}}(x, T)$) the minimum (resp. maximum) distance from a point x of E to the sites of a subset T of S, $f_P(Q)$ is the set of points of E such that,

$$f_P(Q) = \{x \in E; d_{\text{max}}(x, P) < d(x, Q) = d_{\text{max}}(x, Q) < d(x, S \setminus (P \cup Q))\}$$

if P, Q and $S \setminus (P \cup Q)$ are not empty. If Q is empty, we get the classical definition of the order-k Voronoi region of P:

$$f_P(\emptyset) = \{x \in E; d_{\text{max}}(x, P) < d(x, S \setminus P)\}.$$

Since every point x of E is the center of one and only one k-section of S, the set of order-k Voronoi faces forms a partition of E called the order-k Voronoi diagram of S (see Figure 1 for an illustration).

Note that we have not yet proven that the previously defined Voronoi faces of dimension lower than d are the faces of the order-k Voronoi regions. This proof will be given in Section 4.

For every subset F of E, let $\text{dim}(F)$ be the dimension of the subspace spanned by F and, for every subset Q of cospherical sites of S, let $\text{bis}(Q) = \{x \in E; d(x, Q) = d_{\text{max}}(x, Q)\}$ be the bisector of Q.

Theorem 1. For every k-section (P, Q) of S,

(i) if $Q = \emptyset$, then $f_P(Q)$ is an open connected convex d-dimensional region of E;

(ii) if $0 < \text{dim}(Q) < d$, then $f_P(Q)$ is an open connected convex subset of $\text{bis}(Q)$ and $\text{dim}(f_P(Q)) = d - \text{dim}(Q)$;

(iii) if $\text{dim}(Q) = d$, then $f_P(Q)$ is a point of E (called an order-k Voronoi vertex).

Proof. (i) $f_P(\emptyset) = \{x \in E; d_{\text{max}}(x, P) < d(x, S \setminus P)\}$ is the intersection of the open half spaces $\text{half}(p, s) = \{x \in E; d(x, p) < d(x, s)\}$ where p is a site of P and s a site of $S \setminus P$. Thus, $f_P(\emptyset)$ is an open connected convex d-dimensional subset of E.