An Efficient Solution to the Corridor Search Problem

Xuehou TAN
Tokai University, 317 Nishino, Numazu 410-0321, Japan

Abstract. The corridor search problem is the problem of searching for a mobile intruder in the corridor, which is a polygonal region P with an entrance u and an exit v, by the mobile searcher having flashlights whose visibility is limited to the rays emanating from his position. In this paper, we relate the corridor search problem to the well studied two-guard problem, which gives us efficient solutions for several versions of the corridor search problem. Specially, we can decide whether there exists a schedule for the searcher having two flashlights to detect the intruder in $O(n \log n)$ time, and if so generate such a schedule in $O(n \log n + k)$ time, where $k (\leq n^2)$ is the minimum number of search instructions. Our results improve upon the previous time bounds $O(n^2)$ and $O(n^2 \log n)$, respectively.

1 Introduction

In recent years, much attention has been devoted to the problem of searching for a mobile intruder in a polygonal region P by the mobile searcher having flashlights whose visibility is limited to the rays emanating from his position [2, 5, 9, 10]. The goal is to decide whether there exists a schedule for the searcher to detect the intruder, no matter how fast he moves, and if so generate such a schedule. This problem, called the polygon searching problem, was introduced by Suzuki and Yamashita [9]. Both the searcher and the intruder are modeled by points that can move continuously in P. A searcher is called the k-searcher if he has k flashlights and can see along k rays emanating from his searchlights, or the ∞-searcher if he has a light bulb and is of a 360° field of vision. A flashlight can be rotated continuously with bounded speed to change its direction. A polygon is said searchable by a given searcher if there exists a schedule for the searcher. A number of necessary conditions and sufficient conditions for a polygon to be searchable by a k-searcher or an ∞-searcher are given in [9].

Crass, Suzuki and Yamashita considered a variant of the polygon search problem, called the corridor search problem, in which the given polygon P has an entrance u and an exit v [2]. The task of the searcher, starting at u, is then to force the intruder, out of P through v (but not u). They show that the 2-searcher has the same capability as the ∞-searcher in the corridor search problem, and give a necessary and sufficient condition for a corridor to be searchable by a 2-searcher. Also, an $O(n^2)$ time algorithm for determining whether the given corridor is searchable by a 2-searcher and an $O(n^2 \log n)$ time algorithm for generating a search schedule are presented.

In this paper, we relate the corridor search problem to the well studied two-guard problem [7, 6], which gives us efficient solutions for several versions of the
corridor search problem. Specially, we can decide whether there exists a schedule for the 2-searcher to detect the intruder in $O(n \log n)$ time, and if so generate such a schedule in $O(n \log n + k)$ time, where $k (\leq n^2)$ is the minimum number of search instructions. Our results improve upon the previous time bounds $O(n^2)$ and $O(n^2 \log n)$, respectively.

2 Basic definitions

Let P denote a simple polygon in the plane, i.e., a polygon without self-intersections or holes. Two points $x, y \in P$ are said to be mutually visible if the line segment \overline{xy} connecting them is entirely contained within P. For two regions $R, Q \subseteq P$, we say that R is weakly visible from Q if every point in R is visible from some point in Q.

When two vertices u and v of polygon P are given, the boundary of P is divided into two polygonal chains, L and R, with common endpoints u and v. Both chains L and R are oriented from u to v. Points on L (R) are denoted by $p_1, p_2, \ldots, p_{|L|}$ ($q_1, q_2, \ldots, q_{|R|}$). For a vertex x of a polygonal chain, $Succ(x)$ denotes the vertex of the chain immediately succeeding x, and $Pred(x)$ the vertex immediately preceding x. For two points $p, p' \in L$, we say that p precedes p' (and p' succeeds p) if we encounter p before p' when traversing L from s to t. We write $p < p'$. The chain $L_{<p}$ ($L_{>p}$) is the subchain of L consisting of all points that precede (succeed) p. The definition for R is symmetric.

A vertex of P is reflex if its interior angle is greater than 180°; otherwise, it is convex. An important definition for reflex vertices is that of ray shots: the backward ray shot from a reflex vertex r of chain L or R, denoted by $Backw(r)$, is the first point of P hit by a “bullet” shot at r in the direction from $Succ(r)$ to r, and the forward ray shot $Forw(r)$ is the first point hit by the bullet shot at r in the direction from $Pred(r)$ to r.

Let ∂P denote the boundary of polygon P. A search schedule of the k-searcher for P from u to v is a tuple $S = (s, f_1, f_2, \ldots, f_k)$ of $k+1$ continuous functions $s : [0, 1] \to P$ and $f_1, f_2, \ldots, f_k : [0, 1] \to \partial P$, where $s(0) = f_1(0) = \cdots = f_k(0) = u$ and $s(1) = f_1(1) = \cdots = f_k = v$. (We have assumed in the definition that any ray emanating from a flashlight hits the boundary of P instantly.) A point $x \in P$ is illuminated at time t during the execution of S if x lies on one of the line segments $s(t)f_1(t), s(t)f_2(t), \ldots, s(t)f_k(t)$, where $s(t)$ is the position of the searcher and $f_1(t), f_2(t), \ldots, f_k(t)$ are the endpoints of flashlight on the boundary of P at time t, respectively. Hence, the illuminated points at any given time are those visible from the k-searcher. Any region that might contain the intruder at a time is said to be contaminated; otherwise it is said to be clear. Obviously, the line segments connecting the searcher and his flashlight at any time of a search schedule should separate the clear regions from the contaminated ones. A schedule of the ∞-searcher can be given analogously [9]. Corridor P is said to be k-searchable (or ∞-searchable) if there exists a search schedule of the k-searcher (or ∞-searcher) for P.