14. Resolution 2

Throughout this section we will assume that \(\Phi_X : X \to S \) is weakly prepared.
We define a new condition on \(X \).

Definition 14.1. Suppose that \(r \geq 2 \). We will say that \(C_r(X) \) holds if:

1. If \(p \in X \) is a 1 point then \(\nu(p) \leq r \). If \(\nu(p) = r \) then \(\gamma(p) = r \).
2. If \(p \) is a 2 point then \(\nu(p) \leq r \). If \(\nu(p) = r \) then \(\gamma(p) = r \). If \(\nu(p) = r - 1 \) then one of the following three cases must hold:
 (a) \(\tau(p) > 0 \) or
 (b) \(\gamma(p) = r \) or
 (c) \(r \geq 3 \), \(\nu(p) = r - 1 \), \(\tau(p) = 0 \), \(p \notin \overline{S}_r(X) \), there exists a unique curve \(D \subset \overline{S}_{r-1}(X) \) containing a 1 point such that \(p \in D \), and permissible parameters \((x, y, z)\) at \(p \) such that \(x = z = 0 \) are local equations of \(D \),

\[
\begin{align*}
u &= (x^ay^b)^m \\
v &= P(x^ay^b) + x^ay^d F_p \\
F_p &= \tau x^{r-1} + \sum_{j=0}^{r-1} \overline{a}_j(y, z) y^j z^{r-1-j}
\end{align*}
\]

where \(\tau \) is a unit, \(\overline{a}_j \) are units (or 0). There exists \(i \) such that \(\overline{a}_i \neq 0 \),
\[
\left\{ \frac{d_j}{i} - \frac{e_i}{i} \right\} \leq \frac{e_j}{j}
\]
for all \(j \), and
\[
\left\{ \frac{d_i}{i} \right\} + \left\{ \frac{e_i}{i} \right\} < 1.
\]

3. If \(p \) is a 3 point then \(\nu(p) \leq r - 2 \).
4. \(\overline{S}_r(X) \) makes SNCs with \(\overline{B}_2(X) \).

Remark 14.2. If \(C_r(X) \) holds then there does not exist a 2 curve \(C \) on \(X \) such that \(C \) is \(r \) small or \(r-1 \) big.

In this section we will prove a condition stronger than \(C_r(X) \) (Theorem 14.7).

Theorem 14.3. Suppose that \(r \geq 2 \), \(A_r(X) \) holds, \(p \in X \) is a 2 point such that \(\nu(p) = r \) and \(2 \leq \tau(p) < r \), then either

1. There exists a sequence of quadratic transforms \(\pi : Y \to X \) over \(p \) such that
 (a) \(A_r(Y) \) holds.
 (b) If \(q \in \pi^{-1}(p) \) is a 1 point then \(\nu(q) \leq r \). \(\nu(q) = r \) implies \(\gamma(q) = r \).
 (c) If \(q \in \pi^{-1}(p) \) is a 2 point then \(\nu(q) \leq r - 1 \).
 (d) If \(q \in \pi^{-1}(p) \) is a 3 point, then \(\nu(q) \leq r - 2 \).
 (e) If \(D \subset \pi^{-1}(p) \) is a 2 curve, then \(D \) is not \(r \) small or \(r-1 \) big.

or

2. There exists a curve \(C \subset \overline{S}_r(X) \) such that \(p \in C \) and \(C \) is \(r \) big at \(p \).

There exists an affine neighborhood \(U \) of \(p \) such that the blow-up of \(C \cap U \)
\[\pi : Y \to U \] is a permissible monoidal transform such that
(a) \(A_r(Y) \) holds.

© Springer-Verlag Berlin Heidelberg 2002
(b) If \(q \in \pi^{-1}(p) \) is a 2 point, then \(\nu(q) \leq r - 1 \).
(c) If \(q \in \pi^{-1}(p) \) is the 3 point, then \(\nu(q) \leq r - 2 \).
(d) The 2 curve \(D = \pi^{-1}(p) \) is not \(r \) small or \(r \)-1 big.

In either case, if \(X \) satisfies the conclusions of Theorem 13.8, then \(Y \) satisfies the conclusions of Theorem 13.8.

Proof. \(p \) has permissible parameters \((x, y, z)\) such that
\[
\begin{align*}
\nu &= (x^n y^k)^m \\
v &= P(x^n y^k) + x^c y^d F_p \\
F_p &= \sum_i \tau_{i+j+k \geq r} a_{i j k} x^i y^j z^k
\end{align*}
\]

Suppose that there does not exist a curve \(C \subset T_r(X) \) such that \(C \) is \(r \) big at \(p \).

Let \(\pi : X_1 \rightarrow X \) be the blow-up of \(p \). We will first show that (a), (b) and (d) of 1. hold on \(X_1 \) and if \(q \in \pi^{-1}(p) \) is a 2 point with \(\nu(q) = r \) then \(\tau(q) \geq \tau(p) \). This follows from Theorem 7.1, Theorem 7.3 and Lemma 7.9. All exceptional 2 curves \(D \) of \(\pi \) contain a 3 point \(q \) such that \(\nu(q) \leq r - 2 \). (c) thus holds by Lemmas 8.1 and 7.7.

By Lemma 8.1 there are at most finitely many 2 points \(q \in \pi^{-1}(p) \) such that \(\nu(q) = r \). Suppose that there exists a 2 point \(q \in \pi^{-1}(p) \) and \(\nu(q) = r \). After a permissible change of parameters at \(p \), we have permissible parameters \((x_1, y_1, z_1)\) at \(q \) such that \(x = x_1, y = x_1 y_1, z = x_1 z_1 \). \(L_p = L_p(y, z) \) depends on both \(y \) and \(z \).

Suppose there also exists a 2 point \(q' \in \pi^{-1}(p) \) such that \(\nu(q') = r \) and \(q' \) has permissible parameters \((x', y', z')\) such that
\[
x = x' y', y = y', z = y'(z' + \alpha)
\]
for some \(\alpha \in k \). Then there exists a form \(L(x, z - \alpha y) \) such that
\[
L_p(y, z) = \begin{cases}
L(x, z - \alpha y) + \tau x^n y^k & \text{if there exists } \alpha, \beta \in \mathbb{N} \text{ such that } \\
L(x, z - \alpha y) & \text{otherwise}
\end{cases}
\]

Thus
\[
L_p = \overline{d}(z - \alpha y)^r + \tau y^r
\]
for some \(\overline{d}, \tau \in k \) with \(\overline{d} \neq 0 \), a contradiction to the assumption that \(\tau(p) < r \).

Let
\[
\cdots \rightarrow Y_n \rightarrow Y_{n-1} \rightarrow \cdots \rightarrow Y_1 \rightarrow X
\]
be the sequence of quadratic transforms \(\pi_n : Y_n \rightarrow Y_{n-1} \) constructed by blowing up all 2 points \(q' \) on \(\pi_n \) which lie over \(p \) and have \(\nu(q') = r \).

Suppose that this sequence has infinite length. Then there exists \(q_n \in Y_n \) such that \(\pi_n(q_n) = q_{n-1} \) and \(\nu(q_n) = r \) for all \(n \). There exists a series \(\phi(x) = \sum \alpha_i x^i \) such that after replacing \(z \) with \(z - \phi(x) \), \(q_n \) has permissible parameters \((x_n, y_n, z_n)\) such that
\[
x = x_n, y = x_n^n y_n, z = x_n^n z_n
\]
and
\[
F_{q_n} = L_q(y_n, z_n) + x_n \Omega_n.
\]