An Algorithm for Finding Equivalence Relations from Tables with Non-deterministic Information

Hiroshi SAKAI and Akimichi OKUMA

Department of Computer Engineering
Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan
sakai@comp.kyutech.ac.jp

Abstract. Rough sets theory depending upon DIS (Deterministic Information System) is now becoming a mathematical foundation of soft computing. Here, we pick up NIS (Non-deterministic Information System) which is more general system than DIS and we try to develop the rough sets theory depending upon NIS. We first give a definition of definability for every object set X, then we propose an algorithm for checking it. To find an adequate equivalence relation from NIS for X is the most important part in this algorithm, which is like a resolution. According to this algorithm, we implemented some programs by prolog language on the workstation.

1 Introduction

Rough sets theory is seen as a mathematical foundation of soft computing, which covers some areas of research in AI, i.e., knowledge, imprecision, vagueness, learning, induction[1,2,3,4]. We recently see many applications of this theory to knowledge discovery and data mining[5,6,7,8,9].

In this paper, we deal with rough sets in NIS (Non-deterministic Information System), which will be an advancement from rough sets in DIS (Deterministic Information System). According to [1,2], we define every DIS = (OB, AT, {VAL\(_a\) | \(a \in AT\)}, f), where OB is a set whose element we call object, AT is a set whose element we call attribute, VAL\(_a\) for \(a \in AT\) is a set whose element we call attribute value and f is a mapping such that \(f: OB \times AT \rightarrow \bigcup_{a \in AT} VAL_{a}\), which we call classification function. For every \(x, y (x \neq y) \in OB\), if \(f(x, a) = f(y, a)\) for every \(a \in AT\) then we see there is a relation for \(x\) and \(y\). This relation becomes an equivalence relation on OB, namely we can always define an equivalence relation EQ on OB. If a set \(X(\subset OB)\) is the union of some equivalence classes in EQ, then we call \(X\) is definable in DIS. Otherwise we call \(X\) is rough [1].

Now we go to the NIS. We define every NIS = (OB, AT, {VAL\(_a\) | \(a \in AT\)}, g), where g is a mapping such that \(g: OB \times AT \rightarrow P(\bigcup_{a \in AT} VAL_{a})\) (Power set for \(\bigcup_{a \in AT} VAL_{a}\))[3,4]. We need to remark that there are two interpretations for mapping g, namely AND-interpretation and OR-interpretation. For example, we can give the following two interpretations for \(g(\text{tom}, \text{language}) = \{\text{English, Polish, Japanese}\}\).

© Springer-Verlag Berlin Heidelberg 1999
(AND-interpretation) Tom can use three languages, English, Polish and Japanese. Namely, we see $g(tom, language) = English \land Polish \land Japanese$.

(OR-interpretation) Tom can use either one of language in English, Polish or Japanese. Namely we see $g(tom, language) = English \lor Polish \lor Japanese$.

The OR-interpretation seems to be more important for g. Because, it is related to incomplete information and uncertain information. Furthermore, knowledge discovery, data mining and machine learning from incomplete information and uncertain information will be important issue. In such situation, we discuss NIS with OR-interpretation. We have already proposed incomplete information and selective information for OR-interpretation [10], where we distinguished them by the existence of unknown real value. In this paper, we extend the contents in [10] and develop the algorithm for finding equivalence relations in NIS.

2 Aim and Purpose in Handling NIS

Now in this section, we show the aim and purpose in handling NIS. Let’s consider the following example.

Example 1. Suppose the next NIS_1 such that $OB = \{1, 2, 3, 4\}$, $AT = \{A, B, C\}$, $\bigcup_{a \in AT} VAL_a = \{1, 2, 3\}$ and g is given by the following table.

<table>
<thead>
<tr>
<th>OB</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 ∨ 2</td>
<td>2</td>
<td>1 ∨ 2 ∨ 3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1 ∨ 2 ∨ 3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1 ∨ 2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2 ∨ 3</td>
</tr>
</tbody>
</table>

Table 1. Non-deterministic Table for NIS_1

In this table, if we select an element for every disjunction then we get a DIS. There are $72(=2^3 \times 3^3 \times 2^2)$ DISs for this NIS_1. In this case, we have the following issues.

Issue 1: For a set $\{1, 2\} (\subset OB)$, if we select 1 from $g(1, A)$ and 3 from $g(1, C)$, $g(2, C)$ and $g(4, C)$ then $\{1, 2\}$ is not definable. However, if we select 1 from $g(1, C)$ and $g(2, C)$ then $\{1, 2\}$ is definable. How can we check such definability for every subset X of OB?

Issue 2: How can we get all possible equivalence relations from 72 DISs? Do we have to check 72 DISs sequentially?

Issue 3: Suppose there are following information for attribute D: $g(1, D) = \{1\}$, $g(2, D) = \{1\}$, $g(3, D) = \{2\}$ and $g(4, D) = \{2\}$, respectively. In this case, which DIS from NIS_1 makes $(A, B, C) \to D$ consistent? How can we get all DISs which make $(A, B, C) \to D$ consistent?

These issues come from the fact such that the equivalence relation in DIS is always unique but there are some possible equivalence relations for NIS.