In the previous chapter, we tried to establish the almost sure single-valuedness of the c-subdifferential by an argument involving “global” topological properties, such as connectedness. Since this strategy worked out only in certain particular cases, we shall now explore a different method, based on local properties of c-convex functions. The idea is that the global question “Is the c-subdifferential of ψ at x single-valued or not?” might be much more subtle to attack than the local question “Is the function ψ differentiable at x or not?” For a large class of cost functions, these questions are in fact equivalent; but these different formulations suggest different strategies. So in this chapter, the emphasis will be on tangent vectors and gradients, rather than points in the c-subdifferential.

This approach takes its source from the works by Brenier, Rachev and Rüschendorf on the quadratic cost in \mathbb{R}^n, around the end of the eighties. It has since then been improved by many authors, a key step being the extension to Riemannian manifolds, first addressed by McCann in 2000.

The main results in this chapter are Theorems 10.28, 10.38 and (to a lesser extent) 10.42, which solve the Monge problem with increasing generality. For Parts II and III of this course, only the particular case considered in Theorem 10.41 is needed.

A heuristic argument

Let ψ be a c-convex function on a Riemannian manifold M, and $\phi = \psi^c$. Assume that $y \in \partial_c \psi(x)$; then, from the definition of c-subdifferential,
one has, for all \(\tilde{x} \in M \),
\[
\begin{cases}
\phi(y) - \psi(x) = c(x, y) \\
\phi(y) - \psi(\tilde{x}) \leq c(\tilde{x}, y).
\end{cases}
\tag{10.1}
\]
It follows that
\[
\psi(x) - \psi(\tilde{x}) \leq c(\tilde{x}, y) - c(x, y).
\tag{10.2}
\]

Now the idea is to see what happens when \(\tilde{x} \rightarrow x \), along a given direction. Let \(w \) be a tangent vector at \(x \), and consider a path \(\varepsilon \rightarrow \tilde{x}(\varepsilon) \), defined for \(\varepsilon \in [0, \varepsilon_0) \), with initial position \(x \) and initial velocity \(w \).
(For instance, \(\tilde{x}(\varepsilon) = \exp_x(\varepsilon w) \); or in \(\mathbb{R}^n \), just consider \(\tilde{x}(\varepsilon) = x + \varepsilon w \).)
Assume that \(\psi \) and \(c(\cdot, y) \) are differentiable at \(x \), divide both sides of (10.2) by \(\varepsilon > 0 \) and pass to the limit:
\[
-\nabla \psi(x) \cdot w \leq \nabla_x c(x, y) \cdot w.
\tag{10.3}
\]
If then one changes \(w \) to \(-w \), the inequality will be reversed. So necessarily
\[
\nabla \psi(x) + \nabla_x c(x, y) = 0.
\tag{10.4}
\]
If \(x \) is given, this is an equation for \(y \). Since our goal is to show that \(y \) is determined by \(x \), then it will surely help if (10.4) admits at most one solution, and this will obviously be the case if \(\nabla_x c(x, \cdot) \) is injective.
This property (injectivity of \(\nabla_x c(x, \cdot) \)) is in fact a classical condition in the theory of dynamical system, where it is sometimes referred to as a **twist condition**.

Three objections might immediately be raised. First, \(\psi \) is an unknown of the problem, defined by an infimum, so why would it be differentiable? Second, the injectivity of \(\nabla_x c \) as a function of \(y \) seems quite hard to check on concrete examples. Third, even if \(c \) is given in the problem and a priori quite nice, why should it be differentiable at \((x, y)\)? As a very simple example, consider the square distance function \(d(x, y)^2 \) on the 1-dimensional circle \(S^1 = \mathbb{R}/(2\pi \mathbb{Z}) \), identified with \([0, 2\pi)\):
\[
d(x, y) = \min(|x - y|, 2\pi - |x - y|).
\]
Then \(d(x, y) \) is not differentiable as a function of \(x \) when \(|y - x| = \pi \), and of course \(d(x, y)^2 \) is not differentiable either (see Figure 10.1).

Similar problems would occur on, say, a compact Riemannian manifold, as soon as there is no uniqueness of the geodesic joining \(x \) to \(y \).