Automated Visual Attention Manipulation

Tibor Bosse¹, Rianne van Lambalgen¹, Peter-Paul van Maanen¹,², and Jan Treur¹

¹ Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{tbosse,rm.van.lambalgen,treur}@cs.vu.nl
² TNO Human Factors, P.O. Box 23, 3769 ZG Soesterberg, The Netherlands
peter-paul.vanmaanen@tno.nl

Abstract. In this paper a system for visual attention manipulation is introduced and formally described. This system is part of the design of a software agent that supports naval crew in her task to compile a tactical picture of the situation in the field. A case study is described in which the system is used to manipulate a human subject’s attention. To this end the system includes a Theory of Mind about human attention and uses this to estimate the subject’s current attention, and to determine how features of displayed objects have to be adjusted to make the attention shift in a desired direction. Manipulation of attention is done by adjusting illumination according to the calculated difference between a model describing the subject’s attention and a model prescribing it.

1 Introduction

In the domain of naval warfare, it is crucial for the crew of the vessels involved to be aware of the situation in the field. Examples of important questions that should be addressed continuously are “in which direction are we heading?”, “are we currently under attack?”, “are there any friendly vessels around?”, and so on. To assess such issues, one of the crew members is usually assigned the Tactical Picture Compilation Task (TPCT): the task to identify and classify all entities in the environment (e.g., [11]). This is done by monitoring a radar screen for radar contacts, and reasoning with the available information in order to determine the type and intent of the contacts on the screen. However, due to the complex and dynamic nature of the environment, this person has to deal with a large number of tasks in parallel. Often the radar contacts are simply too numerous and dynamic to be adequately monitored by a single human, which compromises the performance of the task.

For these reasons, it may be useful to offer the human some support from an intelligent ambient system, consisting of software agents that assist him in the execution of the Tactical Picture Compilation Task. For example, in case the human is directing its attention on the left part of a radar screen, but ignores an important contact that just entered the radar screen from the right, such an agent may alert him about the arrival of that new contact. To be able to provide this kind of intelligent support, the system somehow needs to maintain a model of the cognitive state of the human: in this case the human’s focus of attention. It should have the capability to attribute mental, and in particular attentional (e.g., [12], [13], [14]) states to the...
human, and to reason about these. In psychology and philosophy this characteristic is often referred to as Theory of Mind (or ToM, see, e.g., [1]). According to [7], agents, both human and software, can exploit a Theory of Mind for two purposes: to anticipate the behaviour of other agents (e.g., preparing for the consequences of certain actions that the other will probably perform), and to manipulate it (e.g., trying to influence the actions that the other will perform). In case of an intelligent system to support naval crew members, both purposes are relevant, but require a different type of support. This study is related to the latter type, the type that tries to manipulate the focus of attention.

A number of approaches in the literature address the development of software agents with a Theory of Mind; e.g., [16], [7]. Usually, such agents maintain, in one way or the other, a model of the epistemic (e.g., beliefs) and/or motivational states (e.g., desires, intentions) of other agents. However, for the situation sketched above, such agents ideally also have insight in another agent’s attentional states. After all, if a supportive agent is to find out whether the human is ignoring some contact, it needs to have some knowledge about which contacts the person is paying attention to. This idea is in line with the theories of cognitive scientists like Gärdenfors [9], [10], who claims that humans have a Theory of Mind that is not only about beliefs, desires, and intentions, but also about other mental states like attentional, emotional, and awareness states.

The current paper is the result of a project that aims to develop intelligent agents to support naval crew members in the Tactical Picture Compilation Task, based on the ideas described above. To this end, four models have been developed. First, a dynamical model of human attention is needed, which estimates where the person’s attention is, based on information about features of objects on the screen and the person’s gaze. Second, a reasoning model is needed to reason through the first model in order to generate beliefs on attentional states at any point in time. Third, a model is needed that compares the output of the second model with some normative attention distribution, and determines whether there is a discrepancy. Finally, a model is needed that uses the output of the third model to determine how to alert the human that he is ignoring something important. An initial version of the first two models has already been developed and were adopted from this earlier work ([5], [6], respectively [2]). The current paper has its focus on the development of the other two models.

Section 2 presents a brief introduction of the existing literature on attentional processes, which helps to understand the choices made within this paper. Next, Section 3 formally describes the different models within the supportive software agent, and presents some simulations that were performed to test the behaviour of the model at a conceptual level. In Section 4, the whole approach is applied in a real-world a case study, using human gaze data and a tactical picture compilation task environment. Finally, Section 5 is a discussion.

2 Manipulation of Attention

Typically, a person’s attention is influenced both by top-down and by bottom-up processes. The former means that observers orient their attention in a goal-directed manner, as a consequence of their expectations or intentions [19]. For example, when