This chapter is concerned with some of the newer areas of solid condensed-matter physics and so contains a variety of topics in nanophysics, surfaces, interfaces, amorphous materials, and soft condensed matter.

There was a time when the living room radio stood on the floor and people gathered around in the evening and “watched” the radio. Radios have become smaller and smaller and thus, increasingly cheaper. Eventually, of course, there will be a limit in smallness of size to electronic devices. Fundamental physics places constraints on how small the device can be and still operate in a “conventional way”. Recently people have realized that a limit for one kind of device is an opportunity for another. This leads to the topic of new ways of using materials, particularly semiconductors, for new devices.

Of course, the subject of electronic technology, particularly semiconductor technology, is too vast to consider here. One main concern is the fact that quantum mechanics places basic limits on the size of devices. This arises because quantum mechanics associates a wavelength with the electrons that carry current and electrical signals. Quantum effects become important when electron wavelength becomes comparable to component size. In particular, the phenomenon of tunneling, which is often assumed to be of no importance for most ordinary microelectronic devices becomes important in this limit. We will discuss some of the basic physics needed to understand these devices, in which tunneling and related phenomena are important. Here we get into the area of bandgap engineering to attain structures that have desired properties not attainable with homostructures. Generally, these structures are nanostructures. A nanostructure is a condensed-matter structure having at least one minimum dimension between about 1 nm to 10 nm.

We will start by discussing surfaces and then consider how to form nanostructures on surfaces by molecular beam epitaxy. Nanostructures may be two dimensional (quantum wells), one dimensional (quantum wires), or “zero” dimensional (quantum dots). We will discuss all of these and also talk about heterostructures, superlattices, quantum conductance, Coulomb blockade, and single-electron devices.

Another reduced-dimensionality effect is the quantum Hall effect, which arises when electrons in a magnetic field are confined two dimensionally. As we will see, the ideas and phenomena involved are quite novel.
Carbon, carbon nanotubes, and fullerene nanotechnology may lead to entirely new kinds of devices and they are also included in this chapter, as the nanotubes are certainly nanostructures.

Amorphous, noncrystalline disordered solids have become important and we discuss them as examples of new materials if not reduced dimensionality.

Finally, the new area of soft condensed-matter physics is touched on. This area includes liquid crystals, polymers, and other materials that may be “soft” to the touch. The unifying idea here is the ease with which the materials deform due to external forces.

12.1 Surface Reconstruction (MET, MS)

As already mentioned, the input and output of a device go through the surface, so physical understanding of surfaces is critical. Of course, the nature of the surface also affects crystal growth, chemical reactions, thermionic emission, semiconducting properties, etc.

One generally thinks of the surface of a material as being the top two or three layers. The rest can be called the bulk or substrate. The distortion near the surface can be both perpendicular (stretching or contracting) as well as parallel. Below we concentrate on that which is parallel.

If we project the bulk with its periodicity on the surface and if no reconstruction occurs we say the surface is 1×1. More likely the lack of bonding forces on the surface side will cause the surface atoms to find new locations of minimum energy. Then the projection of the bulk on the surface is different in symmetry from the surface. For the special case where the projection defines primitive surface vectors a and b, while the actual surface has primitive vectors $a_s = Na$ and $b_s = Mb$ then one says one has an $N \times M$ reconstruction. If there also is a rotation R of β associated with a_s and b_s primitive cell compared to the a, b primitive cell we write the reconstruction as

$$\left(\frac{a_s}{a} \times \frac{b_s}{b} \right) R\beta .$$

Note that the vectors a and b depend on whether the original (unreconstructed or unrelaxed) surface is $(1, 1, 1)$ or $(1, 0, 0)$, or in general (h, k, l). For a complete description the surface involved would also have to be included. The reciprocal lattice vectors A, B associated with the surface are defined in the usual way as

$$A \cdot a_s = B \cdot b_s = 2\pi , \quad (12.1a)$$

and

$$A \cdot b_s = B \cdot a_s = 0 , \quad (12.1b)$$

where the 2π now inserted in an alternative convention for reciprocal lattice vectors. One uses these to discuss two-dimensional diffraction.