6 Means and Means of Means

We shall confine ourselves to unweighted and weighted arithmetic means as issued by the method of least squares.

6.1 Arithmetic Mean

Let us consider \(n \) independent repeated measurements

\[x_1, x_2, \ldots, x_n \]

with formal decompositions

\[x_l = x_0 + (x_l - \mu_x) + f_x, \quad -f_{s,x} \leq f_x \leq f_{s,x}; \quad l = 1, \ldots, n. \]

The measurements produce a mean

\[\bar{x} = \frac{1}{n} \sum_{l=1}^{n} x_l \quad (6.1) \]

and an empirical standard deviation

\[s_x^2 = \frac{1}{n-1} \sum_{l=1}^{n} (x_l - \bar{x})^2. \quad (6.2) \]

As shown in Appendix H, Student’s \(t \) exists in two versions

\[T(n-1) = \frac{X - \mu_x}{S_x} \quad \text{and} \quad T(n-1) = \frac{\bar{X} - \mu_x}{S_x/\sqrt{n}}. \]

Correspondingly, the inequality

\[-t_P \leq T \leq t_P \]

issues confidence intervals

\[x_l - t_P(n-1) s_x \leq \mu_x \leq x_l + t_P(n-1) s_x; \quad l = 1, \ldots, n \quad (6.3) \]
Fig. 6.1. Biased arithmetic mean \bar{x} with uncertainty $u_{\bar{x}}$