On the Robustness of Type-1 and Type-2 Fuzzy Tests vs. ANOVA Tests on Means

Juan C. Figueroa García1, Dusko Kalenatic2, and Cesar Amilcar Lopez Bello3

1 Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
2 Universidad de la Sabana, Chia, Colombia
3 Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

jcfigueroag@udistrital.edu.co, duskokalenatic@yahoo.com, clopezb@udistrital.edu.co

Abstract. This paper presents a simulation study on fuzzy tests vs. ANOVA test on means. Type-1, Interval Type-2 and ANOVA classical tests are compared through a simulated experiment for contrasting the stability of those approaches in front to a small change on sample.

We perform an experiment of comparing the means of three groups where the classical ANOVA test is very nearby to the rejection p-value and the fuzzy tests get more robust results. In this way, we use bootstrap concepts to simulate the change of a random value of the sample to view the behavior of each technique in front to these changes.

1 Introduction and Motivation

Recently, the use of fuzzy sets for involving uncertainty in the statistical analysis and its advantages has allowed the appearance of a new discipline called Fuzzy Statistics, in which many researchers are dedicating their efforts to the definition of correct expressions for solving different problems of data analysis. James J. Buckley in [1] and [2] defines new probability concepts based on Type-1 fuzzy sets called “Fuzzy Probabilities” and therefore fuzzy test statistics. A. Mohammadpuor & A. Mahammad.Djafari in [3] propose a fuzzy test by using fuzzy relations and Bayesian concepts, showing their proposal converges to the best crisp test by using the Neyman-Pearson Lemma. B. F. Arnold in [7] proposes a similar work based on interval numbers and M. Last, A. Schenker & A. Kandel in [8] show an application to medical data.

We compare three hypothesis engines: ANOVA test, a Type-1 fuzzy logic system (T1FLS) proposed by Figueroa & Soriano in [9] and an Interval Type-2 fuzzy logic system (IT2FLS) proposed by Figueroa, Rodriguez & Sierra in [10] in order to view its behavior when the sample has been changed.

1 For additional information see [4], [5] and [6].
This paper is divided as follows: Section 1 introduces the topic; Section 2 presents hypothesis testing; Section 3 describes the two fuzzy logic test systems; in Section 4 we present the methodology of simulation; Section 5 presents the results of the simulation and Section 6 gives some concluding remarks.

2 Hypothesis Testing

In many hypothesis-testing problems two hypothesis are discussed: The first, the hypothesis being tested, is called the Null Hypothesis, denoted by H_0, and the second is called the Alternative Hypothesis, denoted by H_a. The natural supposition is that if H_0 is false, then H_a is true. The H_0 outlined here is:

$$H_0 : \mu_1 = \mu_2 = \cdots = \mu_n \quad (1)$$

$H_a : \text{At least one mean is different from others.}$

The multiple means case (1) is widely treated by using the ANOVA method. The Table 1 shows a brief description of the test.

<table>
<thead>
<tr>
<th>Null Hypothesis Test Statistic</th>
<th>Alternative Hypothesis Reject Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0 : \mu_1 = \mu_2 = \cdots = \mu_n$</td>
<td>Reject H_0 when $F_0 \leq F_{1-a, a-1, N-a}$</td>
</tr>
</tbody>
</table>

Where a is the Amount of Data groups, n_i is the Number of observations of the i_{th} group, N is the Total number of observations, MS_{means} is the Mean Square of means, MS_E is the Mean Square of error, y_{ij} is the j_{th} observation for the i_{th} data group, $j = 1, 2, \cdots, n$, \bar{y}_i is the Mean of the i_{th} data group, $i = 1, 2, \cdots, a$ and $\bar{y}_.$ is the Mean of the complete data set. For more information see Scheffé in [11] and Searle in [12].

2.1 Decision Making

A crisp bilateral hypothesis test is a simple process that either rejects or accepts H_0 by using a pre-defined α confidence level (Usually $\alpha = 0.05$), assuming it as the correct one, based on any asymptotic test statistic. The usual reasoning is to Accept H_0 if the sample statistic is inside a Confidence Interval, that is:

$$\bar{y} \in \left[g_1(\mu_0) ; g_2(\mu_0) \right] \quad (2)$$

Where $g_1(\mu_0)$ and $g_1(\mu_0)$ are functions of μ_0 and \bar{y} is the mean of the sample y. $P(g_1(\mu_0) < \mu < g_2(\mu_0)) = 1 - \alpha$. The classical hypothesis tests use only one rule to verify H_0, based on asymptotic properties (Or Normality) of the sample:

R_1: If $\bar{y} \in \left[g_1(\mu_0) ; g_2(\mu_0) \right]$ then H_0 is Accepted, otherwise H_0 is Rejected.