2.1 Basic Concepts and Formulae

Wave number

\[\tilde{\nu} = \frac{1}{\lambda} \quad (2.1) \]

1 fm = 10^{-15} m; 1 Å = 10^{-10} m; 1 nm = 10^{-9} m; 1 μm = 10^{-6} m; \ h c = 197.3 \ \text{Mev} – \text{fm}

Photon energy

\[E = h \nu \quad (2.2) \]

Photon momentum

\[p = h \nu / c \]

Photon energy – wavelength conversion

\[\lambda (\text{nm}) = \frac{1241}{E (\text{ev})} \quad (2.3) \]

de Broglie wavelength

\[\lambda = h / p \quad (2.4) \]

\[\lambda (\text{electron}) : \lambda (\text{Å}) = (150 / V)^{1/2} \quad (2.5) \]

\[\lambda (\text{neutron}) : \lambda (\text{Å}) = 0.286 \ E^{-1/2} \ \text{(E in ev)} \quad (2.6) \]

Atomic units

The Bohr radius \(\hbar^2 / m_e e^2 \) is frequently used as the unit of length in atomic physics. In atomic units the energy is measured in multiples of the ionization energy of hydrogen atom that is \(m_e e^4 / 2 \hbar^2 \). In these units \(\hbar^2 = 1 \), \(e^2 = 2 \) and \(m_e = \frac{1}{2} \) in all equations.
Natural units

\[\hbar = c = 1 \] \hspace{1cm} (2.7)

Mosley’s law (for characteristic X-rays)

\[\sqrt{\nu} = A(Z - b) \] \hspace{1cm} (2.8)

where \(Z \) is the atomic number, \(A \) and \(b \) are constants.

For \(K_{\alpha} \) line

\[\lambda = \frac{1.200}{(Z - 1)^2} \text{Å} \] \hspace{1cm} (2.9)

X-rays absorption

\[I = I_0 e^{-\mu x} \] \hspace{1cm} (2.10)

Duane–Hunt law (for continuous X-rays)

\[\lambda_c = \frac{c}{v_{\text{max}}} = \frac{hc}{eV} = \frac{1.240}{V} \text{pm} \] \hspace{1cm} (2.11)

where \(e \) is the electron charge and \(V \) is the P.D through which the electrons have been accelerated in the X-ray tube.

Doppler effect (Non-relativistic)

\[v = v_0(1 + \beta c \cos \theta^*) \] \hspace{1cm} (2.12)

where \(v \) is the observed frequency, \(v_0 \) the frequency of light in the rest frame of source emitted at angle \(\theta^* \), \(v = \beta c \) is the source velocity. The inverse transformation is

\[v_0 = v(1 - \beta c \cos \theta) \] \hspace{1cm} (2.13)

Hydrogen atom (Bohr’s model)

Angular momentum

\[L = n\hbar, \quad n = 1, 2, 3 \ldots \ldots \] \hspace{1cm} (2.14)

Energy of photon emitted from energy level \(E_i \) to final level \(E_f \).

\[h\nu = E_i - E_f \] \hspace{1cm} (2.15)

Radius of the \(n \)th orbit

\[r_n = \frac{\varepsilon_0 h^2 n^2}{\pi \mu e^2 z} \] \hspace{1cm} (2.16)