12 Plant Simulation 3D

12.1 Sample Project

Plant Simulation supports modeling and simulating models in virtual space. The 2D model is assigned a 3D model, which is controlled by the 2D model (corresponding models). All changes in 2D/3D model have an impact on the corresponding model in the other part of the program.

Example 118: Plant Simulation 3D

You are to simulate two machines which are connected with a conveyor belt. The conveyor belt is divided into three segments of 1 meter each. The conveyor speed is 0.5 m/min, the processing time of the machines is 1 minute, and the source generates one part every minute. Create the following Frame:

Now start Plant Simulation 3D: 3D – Start 3D viewer.

Now you have two corresponding models. The preliminary result is a 3D model with standard symbols.
12.2 Views and Move in Plant Simulation 3D

Corresponding to the size of the corresponding 2D simulation, Plant Simulation generates a base plate in the 3D model. As a 2D reference level \((Z = 0)\), the base plate facilitates the orientation and navigation within 3D space. The base plate has a grid on which you can align your objects. You can display or hide the grid button:

Click Modes – Motion for moving the actual scene. Plant Simulation offers the following ways to move the scene:

You can use the icons with the red dot to manipulate individual objects.

If you are lost, and your Frame is no longer shown on the screen, you can use the command View > View All.

12.3 Control the Simulation in Plant Simulation 3D

You can start the EventController with \(\Rightarrow\). In addition, you can find buttons to reset, start, and stop the simulation on the toolbar.