2

ABOUT H-FUZZY DIFFERENTIATION

The concept of H-fuzzy differentiation is discussed thoroughly in the univariate and multivariate cases. Basic H-derivatives are calculated and then important theorems are presented on the topic, such as, the H-mean value theorem, the univariate and multivariate H-chain rules, and the interchange of the order of H-fuzzy differentiation. Finally is given a multivariate H-fuzzy Taylor formula. This treatment relies in [10].

2.1 Introduction

Fuzziness was first introduced in the celebrated paper [103]. For the notion of H-fuzzy derivative see [93] and [53]. First we give some background from Fuzziness, motivation and justification, necessary for the results to follow. In Propositions 2.5, 2.7, 2.8, 2.10 we calculate basic H-fuzzy derivatives. In Lemmas 1.13 and 1.14 we give results on fuzzy continuity, and in Propositions 2.13 and 2.14 we give basic properties of H-fuzzy differentiation. Then come the main results.

Theorem 2.15 is on H-Fuzzy Mean Value Theorem, Lemmas 2.16, 2.17 and 2.20 are auxiliary on fuzzy convergence and fuzzy continuity, Theorem 2.18 is on univariate H-fuzzy chain rule, and Theorem 2.19 is on multivariate H-fuzzy chain rule.

We conclude with Theorem 2.21 on the interchange of the order of H-fuzzy differentiation, and the development of a multivariate H-fuzzy Taylor formula with integral remainder, see Theorem 2.22 and Corollary 2.23.
2.2 Background

We need the Fuzzy Taylor formula

Theorem 2.1 ([11], see also Theorem 15.14). Let \(T := [x_0, x_0 + \beta] \subset \mathbb{R} \), with \(\beta > 0 \). We assume that \(f^{(i)}: T \to \mathbb{R}_F \) are \(H \)-differentiable for all \(i = 0, 1, \ldots, n - 1 \), for any \(x \in T \). (I.e., there exist in \(\mathbb{R}_F \) the \(H \)-differences \(f^{(i)}(x + h) - f^{(i)}(x) \), \(f^{(i)}(x) - f^{(i)}(x - h) \), \(i = 0, 1, \ldots, n - 1 \) for all small \(h \): \(0 < h < \beta \). Furthermore there exist \(f^{(i+1)}(x) \in \mathbb{R}_F \) such that the limits in \(D \)-distance exist and

\[
\lim_{h \to 0^+} \frac{f^{(i)}(x + h) - f^{(i)}(x)}{h} = \lim_{h \to 0^+} \frac{f^{(i)}(x) - f^{(i)}(x - h)}{h},
\]

for all \(i = 0, 1, \ldots, n - 1 \). Also we assume that \(f^{(n)} \), is fuzzy continuous on \(T \). Then for \(s \geq a; s, a \in T \) we obtain

\[
f(s) = f(a) \oplus f'(a) \odot (s - a) \oplus f''(a) \odot \frac{(s - a)^2}{2!} \oplus \cdots \oplus f^{(n-1)}(a) \odot \frac{(s - a)^{n-1}}{(n-1)!} \oplus R_n(a, s),
\]

where

\[
R_n(a, s) := (FR) \int_a^s \left(\int_a^{s_1} \cdots \left(\int_a^{s_{n-1}} f^{(n)}(s_n) ds_n \right) ds_{n-1} \right) \cdots ds_1.
\]

Here \(R_n(a, s) \) is fuzzy continuous on \(T \) as a function of \(s \).

Note. This formula is invalid when \(s < a \), as it is totally based on Corollary 1.12.

Next \(\mathcal{C}[0,1] \) stands for the class of all real-valued bounded functions \(f \) on \([0,1]\) such that \(f \) is left continuous for any \(x \in (0,1) \) and \(f \) has a right limit for any \(x \in [0,1) \), especially \(f \) is right continuous at \(0 \). With the norm \(\|f\| = \sup_{x \in [0,1]} |f(x)| \), \(\mathcal{C}[0,1] \) is a Banach space [50].

We mention

Theorem 2.2 (Wu and Ma [50]). For \(u \in \mathbb{R}_F \), denote \(j: j(u) := (u_-, u_+) \), where \(u_\pm = u_\pm(r) := u_\pm(r) \), \(0 \leq r \leq 1 \). Then \(j(\mathbb{R}_F) \) is a closed convex cone with vertex 0 in \(\mathcal{C}[0,1] \times \mathcal{C}[0,1] \) (here \(\mathcal{C}[0,1] \times \mathcal{C}[0,1] \) is a Banach space with the norm defined by \(\|(f, g)\| := \max(\|f\|, \|g\|) \)), and \(j: \mathbb{R}_F \to \mathcal{C}[0,1] \times \mathcal{C}[0,1] \) satisfies

1. for all \(u, v \in \mathbb{R}_F \), \(s \geq 0, t \geq 0 \), \(j(su + tv) = sj(u) + tj(v) \),
2. \(D(u, v) = \|j(u) - j(v)\| \), i.e., \(j \) embeds \(\mathbb{R}_F \) into \(\mathcal{C}[0,1] \times \mathcal{C}[0,1] \) isometrically and isomorphically.