Chapter 4

Connections and Curvature

4.1 Connections in Vector Bundles

Let X be a vector field on \mathbb{R}^d, V a vector at $x_0 \in \mathbb{R}^d$. We want to analyze how one takes the derivative of X at x_0 in the direction V. For this derivative, one forms

$$
\lim_{t \to 0} \frac{X(x_0 + tV) - X(x_0)}{t}.
$$

Thus, one first adds the vector tV to the point x_0. Next, one compares the vector $X(x_0 + tV)$ at the point $x_0 + tV$ and the vector $X(x_0)$ at x_0; more precisely, one subtracts the second vector from the first one. Division by t and taking the limit then are obvious steps.

A vector field on \mathbb{R}^d is a section of the tangent bundle $T(\mathbb{R}^d)$. Thus, $X(x_0 + tV)$ lies in $T_{x_0 + tV}(\mathbb{R}^d)$, while $X(x_0)$ lies in $T_{x_0}(\mathbb{R}^d)$. The two vectors are contained in different spaces, and in order to subtract the second one from the first one, one needs to identify these spaces. In \mathbb{R}^d, this is easy. Namely, for each $x \in \mathbb{R}^d$, $T_x\mathbb{R}^d$ can be canonically identified with $T_0\mathbb{R}^d \cong \mathbb{R}^d$. For this, one uses Euclidean coordinates and identifies the tangent vector $\frac{\partial}{\partial x_i}$ at x with $\frac{\partial}{\partial x_i}$ at 0. This identification is even expressed by the notation. The reason why it is canonical is simply that the Euclidean coordinates of \mathbb{R}^d can be obtained in a geometric manner. For this, let $c(t) = tx$, $t \in [0, 1]$ be the straight line joining 0 and x. For a vector X_1 at x, let X_t be the vector at $c(t)$ parallel to X_1; in particular, X_t has the same length as X_1 and forms the same angle with \dot{c}. X_0 then is the vector at 0 that gets identified with X_1. The advantage of the preceding geometric description lies in the fact that X_1 and X_0 are connected through a continuous geometric process. Again, this process in \mathbb{R}^d has to be considered as canonical.
On a manifold, in general there is no canonical method anymore for identifying tangent spaces at different points, or, more generally fibers of a vector bundle at different points. For example, on a general manifold, we don’t have canonical coordinates. Thus, we have to expect that a notion of derivative for sections of a vector bundle, for example for vector fields, has to depend on certain choices.

Definition 4.1.1. Let M be a differentiable manifold, E a vector bundle over M. A covariant derivative, or equivalently, a (linear) connection is a map

$$D : \Gamma(E) \rightarrow \Gamma(E) \otimes \Gamma(T^*M)$$

with the properties subsequently listed:

By property (i) below, we may also consider D as a map from $\Gamma(TM) \otimes \Gamma(E)$ to $\Gamma(E)$ and write for $\sigma \in \Gamma(E), V \in T_x M$

$$D\sigma(V) =: D_V \sigma.$$

We then require:

(i) D is tensorial in V :

$$D_{V+W}\sigma = D_V\sigma + D_W\sigma \quad \text{for } V, W \in T_x M, \sigma \in \Gamma(E),$$

$$D_{fV}\sigma = fD_V\sigma \quad \text{for } f \in C^\infty(M, \mathbb{R}), V \in \Gamma(TM).$$

(ii) D is \mathbb{R}-linear in σ :

$$D_V(\sigma + \tau) = D_V\sigma + D_V\tau \quad \text{for } V \in T_x M, \sigma, \tau \in \Gamma(E)$$

and it satisfies the following product rule:

$$D_V(f\sigma) = V(f) \cdot \sigma + fD_V\sigma \quad \text{for } f \in C^\infty(M, \mathbb{R}).$$

Of course, all these properties are satisfied for the differentiation of a vector field in \mathbb{R}^d as described; in that case, we have $D_VX = dX(V)$.

Let $x_0 \in M$, and let U be an open neighborhood of x_0 such that a chart for M and a bundle chart for E are defined on U. We thus obtain coordinate vector fields $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^d}$, and through the identification

$$E|_U \cong U \times \mathbb{R}^n \quad (n = \text{fiber dimension of } E),$$

a basis of \mathbb{R}^n yields a basis μ_1, \ldots, μ_n of sections of $E|_U$. For a connection D, we define the so-called Christoffel symbols Γ^k_{ij} ($j, k = 1, \ldots, n, i = 1, \ldots, d$) by

$$D_{\frac{\partial}{\partial x^i}} \mu_j =: \Gamma^k_{ij} \mu_k.$$

We shall see below that the Christoffel symbols as defined here are a generalization of those introduced in §1.4.