Chapter 4

Singular Lane–Emden–Fowler Equations and Systems

4.1 Bifurcation Problems for Singular Elliptic Equations

In this section we study the bifurcation problem

\[
\begin{cases}
-\Delta u = \lambda f(u) + a(x)g(u) & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where \(\lambda \in \mathbb{R} \) is a parameter and \(\Omega \subset \mathbb{R}^N \) \((N \geq 2)\) is a bounded domain with smooth boundary \(\partial \Omega \). The main feature of this boundary value problem is the presence of the “smooth” nonlinearity \(f \) combined with the “singular” nonlinearity \(g \). More exactly, we assume that \(0 < f \in C^{0, \beta}[0, \infty) \) and \(0 \leq g \in C^{0, \beta}(0, \infty) \) \((0 < \beta < 1)\) fulfill the hypotheses

\begin{enumerate}
\item[(f1)] \(f \) is nondecreasing on \((0, \infty)\) while \(f(s)/s \) is nonincreasing for \(s > 0 \).
\item[(g1)] \(g \) is nonincreasing on \((0, \infty)\) with \(\lim_{s \downarrow 0} g(s) = +\infty \).
\item[(g2)] there exist \(C_0, \eta_0 > 0 \) and \(\alpha \in (0, 1) \) so that \(g(s) \leq C_0 s^{-\alpha}, \forall s \in (0, \eta_0) \).
\end{enumerate}
The assumption \(g_2\) implies the following Keller–Osserman-type growth condition around the origin

\[
\int_0^1 \left(\int_0^t g(s) ds \right)^{-1/2} dt < +\infty. \tag{4.1}
\]

As proved by Bénilan, Brezis and Crandall in [14], condition (4.1) is equivalent to the property of compact support, that is, for any \(h \in L^1(\mathbb{R}^N)\) with compact support, there exists a unique \(u \in W^{1,1}(\mathbb{R}^N)\) with compact support such that \(\Delta u \in L^1(\mathbb{R}^N)\) and

\[-\Delta u + g(u) = h \quad \text{a.e. in } \mathbb{R}^N.\]

In many papers (see, e.g., Dalmasso [56], Kusano and Swanson [125]) the potential \(a(x)\) is assumed to depend “almost” radially on \(x\), in the sense that \(C_1 p(|x|) \leq a(x) \leq C_2 p(|x|)\), where \(C_1, C_2\) are positive constants and \(p(|x|)\) is a positive function satisfying some integrability condition. We do not impose any growth assumption on \(a\), but we suppose that the variable potential \(a(x)\) satisfies \(a \in C^{0,\beta}(\overline{\Omega})\) and \(a > 0\) in \(\Omega\).

If \(\lambda = 0\) this equation is called the Lane–Emden–Fowler equation and arises in the boundary-layer theory of viscous fluids (see Wong [213]). Problems of this type, as well as the associated evolution equations, describe naturally certain physical phenomena. For example, super-diffusivity equations of this type have been proposed by de Gennes [62] as a model for long range Van der Waals interactions in thin films spreading on solid surfaces.

Our purpose is to study the effect of the asymptotically linear perturbation \(f(u)\) in \((P_\lambda)\), as well as to describe the set of values of the positive parameter \(\lambda\) such that problem \((P_\lambda)\) admits a solution. In this case, we also prove a uniqueness result. Due to the singular character of \((P_\lambda)\), we can not expect to find solutions in \(C^2(\overline{\Omega})\). However, under the above assumptions we will show that \((P_\lambda)\) has solutions in the class

\[\mathcal{E} := \{ u \in C^2(\Omega) \cap C^{1,1-\alpha}(\overline{\Omega}); \Delta u \in L^1(\Omega)\}.\]

We first observe that, in view of the assumption \((f1)\), there exists

\[m := \lim_{s \to +\infty} \frac{f(s)}{s} \in [0, \infty).\]

This number plays a crucial role in our analysis. More precisely, the existence of the solutions to \((P_\lambda)\) will be separately discussed for \(m > 0\) and \(m = 0\). Let \(a_* = \min_{x \in \Omega} a(x)\).