ON THE SIZE OF A STABLE MINIMAL SURFACE IN R^3.

By J. L. Barbosa* and M. do Carmo.*

1. Notations and results.

1.1. Let M be a two-dimensional, orientable C^∞-manifold. A domain $D \subset M$ is an open, connected subset with compact closure \overline{D} and such that the boundary ∂D is a finite union of piece-wise smooth curves. Let $x: M \rightarrow R^3$ be a minimal immersion into the Euclidean space R^3. It is well known that D is a critical point of the area of the induced metric, for all variations of \overline{D} which keep ∂D fixed. When this critical point is a minimum for all such variations, we say that D is stable. The goal of this paper is to estimate the “size” of a stable minimal immersion and the main theorem is as follows. Set $S^2_1 = \{(x, y, z) \in R^3; x^2 + y^2 + z^2 = 1\}$ and denote by $g: M \rightarrow S^2_1$, the Gauss map of the immersion x.

Theorem 1.2. Let the area of the spherical image $g(D) \subset S^2_1$ of a domain $D \subset M$ be smaller than 2π. Then D is stable.

This estimate is sharp, as can be shown, for instance, by considering pieces of the catenoid bounded by circles C_1 and C_2 parallel to and in opposite sides of the waist circle C_0. By choosing C_1 close to C_0 and C_2 far from C_0, we may obtain examples of unstable domains whose spherical image has area larger than 2π and as close to 2π as we wish. Further details will be given in Section 2.

Since g may cover $g(D)$ more than once, Theorem 1.2 implies (but it is stronger than) that if the total curvature is smaller than 2π, then D is stable.

Let N be a unit normal field along $x(M)$. Let $\Delta =$ divgrad and K denote the Laplacian and the Gaussian curvature of M, respectively, in the induced metric. Given a piece-wise smooth function $u: \overline{D} \rightarrow R$, with $u \equiv 0$ on ∂D, the second derivative of the area function for a variation whose deformation vector field is given by $V = uN$ is (Cf. 3.2.3 of [9]).

\[I(V, V) = \int_D u(-\Delta u + 2uK) dM. \]

(1.3)

Manuscript received October 17, 1973; revised May 28, 1974.

*Partially supported by C.N.Pq and N.S.F.

Copyright © 1976 by Johns Hopkins University Press.

Reprint: Springer-Verlag Berlin Heidelberg 2012, DOI 10.1007/978-3-642-25588-5_10
where dM is the element of area of M in the induced metric. If $I(V, V) > 0$, for all such V, then D is stable. We say that D is unstable if for some $V, I(V, V) < 0$.

A Jacobi field in \overline{D} is a normal field uN, where $u : \overline{D} \to \mathbb{R}$ is a smooth function which satisfies

$$-\Delta u + 2uK = 0. \quad (1.4)$$

A boundary ∂D of a domain $D \subset M$ is a conjugate boundary if there exists a non-zero Jacobi field on \overline{D} vanishing on ∂D; if, in addition, there exists no domain $D' \subset D, D' \neq D$, such that $\partial D'$ is a conjugate boundary, ∂D is called a first conjugate boundary. The multiplicity of a conjugate boundary ∂D is the number of linearly independent Jacobi fields on \overline{D} vanishing on ∂D.

Theorem 1.2 is related to some results of A. H. Schwarz (see [8]). In Section 2 we prove these results in our context. We also give a simple proof of the fact that the multiplicity of a first conjugate boundary is one.

In Section 3 we prove Theorem 1.2 and indicate another application of the ideas of the proof. The section closes with a few open questions.

We want to thank S. S. Chern for having suggested this question to us. Thanks also due to R. Osserman, who read critically a preliminary version of this work, and to R. Gulliver, who pointed out some gaps in our first proof. Conversations with J. Cheeger, S. Y. Cheng, J. Kazdan, B. Lawson, J. Simons, N. Wallach and F. Warner were helpful during the preparation of this paper.*

2. A result of A. H. Schwarz

2.1. Let W be a two-dimensional real analytic Riemannian manifold and let $D \subset W$ be a domain in W. We will denote by Δ_w the Laplacian of W and by $H(D)$ the space of C^∞ functions on \overline{D} which are not identically zero and vanish on ∂D. A real number $\lambda > 0$ such that there exists a solution of $\Delta_w u + \lambda u = 0, u \in H(D)$, is called an eigenvalue in D for Δ_w (this is actually the negative of the usual eigenvalue). The space

$$P_\lambda(D) = \{ u \in H(D); \Delta_w u + \lambda u = 0 \}$$

of such solutions is the eigenspace corresponding to λ. It is known that if $u \in P_\lambda(D), u$ is analytic in D. It is also known that the eigenvalues in D form a discrete set of positive numbers, and, as usual, we order then so that

$$0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n \ldots .$$

*We want to thank M. Kalka and the referee for pointing out a "medium serious" mistake in a previous version of the paper.