Extended Modal Operators

5.1 Operators D_α and $F_{\alpha,\beta}$

Following [18, 19, 39], we construct an operator which represents both operators \Box from (4.1) and \Diamond from (4.2). It has no analogue in the ordinary modal logic, but the author hopes that the search for such an analogue in modal logic will be interesting.

Let $\alpha \in [0, 1]$ be a fixed number. Given an IFS A, we define an operator D_α as follows:

$$D_\alpha(A) = \{ \langle x, \mu_A(x) + \alpha \pi_A(x), \nu_A(x) + (1 - \alpha) \pi_A(x) \rangle | x \in E \}.$$ \hspace{1cm} (5.1)

From this definition it follows that $D_\alpha(A)$ is a fuzzy set, because:

$$\mu_A(x) + \alpha \pi_A(x) + \nu_A(x) + (1 - \alpha) \pi_A(x) = \mu_A(x) + \nu_A(x) + \pi_A(x) = 1.$$

Some of the specific properties of this operator are:

(a) if $\alpha \leq \beta$, then $D_\alpha(A) \subseteq D_\beta(A)$;
(b) $D_0(A) = \Box A$;
(c) $D_1(A) = \Diamond A,$

for every IFS A and for every $\alpha, \beta \in [0, 1]$.

To every point $x \in E$ the operator $f_{D_\alpha}(A)$ assigns a point of the segment between $f_{\Box} A(x)$ and $f_{\Diamond} A(x)$ depending on the value of the argument $\alpha \in [0, 1]$ (see Fig. 5.1). As in the case of some of the above operations, this construction needs auxiliary elements which are shown in Fig. 5.1.

As we noted above, the operator D_α is an extension of the operators \Box and \Diamond, but it can be extended even further.

Let $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \leq 1$. Define (see [18, 19, 39]) the operator $F_{\alpha,\beta}$, for the IFS A, by

$$F_{\alpha,\beta}(A) = \{ \langle x, \mu_A(x) + \alpha \pi_A(x), \nu_A(x) + \beta \pi_A(x) \rangle | x \in E \}.$$ \hspace{1cm} (5.2)
For every IFS A, and for every $\alpha, \beta, \gamma \in [0, 1]$ such that $\alpha + \beta \leq 1$,

(a) $F_{\alpha, \beta}(A)$ is an IFS;
(b) if $0 \leq \gamma \leq \alpha$, then $F_{\gamma, \beta}(A) \subseteq F_{\alpha, \beta}(A)$;
(c) if $0 \leq \gamma \leq \beta$, then $F_{\alpha, \beta}(A) \subseteq F_{\alpha, \gamma}(A)$;
(d) $D_{\alpha}(A) = F_{\alpha, 1 - \alpha}(A)$;
(e) $\Box A = F_{0, 1}(A)$;
(f) $\Diamond A = F_{1, 0}(A)$;
(g) $F_{\alpha, \beta}(A) = F_{\beta, \alpha}(A)$
(h) $\mathcal{C}(F_{\alpha, \beta}(A)) \subseteq F_{\alpha, \beta}\mathcal{C}(A)$,
(i) $\mathcal{I}(F_{\alpha, \beta}(A)) \supseteq F_{\alpha, \beta}\mathcal{I}(A)$.

Let us prove property (h):

$$
\mathcal{C}(F_{\alpha, \beta}(A)) = \mathcal{C}((x, \mu_A(x) + \alpha_\pi_A(x), \nu_A(x) + \beta_\pi_A(x))|x \in E})
= \{(x, K_1, L_1)|x \in E\},
$$

where

$$
K_1 = \sup_{y \in E}(\mu_A(y) + \alpha_\pi_A(y)),
$$

$$
L_1 = \inf_{y \in E}(\nu_A(y) + \beta_\pi_A(y)),
$$

and

$$
F_{\alpha, \beta}(\mathcal{C}(A)) = F_{\alpha, \beta}(\{(x, K, L)|x \in E\})
= \{(x, K + \alpha_\beta(1 - K - L), L + \beta_\beta(1 - K - L))|x \in E\},
$$

where K and L are defined by (4.8) and (4.9).