Syntactic Complexity of \mathcal{R}- and \mathcal{J}-Trivial Regular Languages*

Janusz Brzozowski and Baiyu Li**

David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, ON, Canada N2L 3G1
{brzozo,b5li}@uwaterloo.ca

Abstract. The syntactic complexity of a subclass of the class of regular languages is the maximal cardinality of syntactic semigroups of languages in that class, taken as a function of the state complexity n of these languages. We prove that $n!$ and $\lceil e(n-1)! \rceil$ are tight upper bounds for the syntactic complexity of \mathcal{R}- and \mathcal{J}-trivial regular languages, respectively.

Keywords: finite automaton, \mathcal{J}-trivial, monoid, regular language, \mathcal{R}-trivial, semigroup, syntactic complexity.

1 Introduction

The state complexity of a regular language L is the number of states in the minimal deterministic finite automaton (DFA) accepting L. An equivalent notion is quotient complexity, which is the number of distinct left quotients of L. The syntactic complexity of L is the cardinality of the syntactic semigroup of L. Since the syntactic semigroup of L is isomorphic to the semigroup of transformations performed by the minimal DFA of L, it is natural to consider the relation between syntactic complexity and state complexity. The syntactic complexity of a subclass of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity of these languages.

Here we consider the classes of languages defined using the well-known Green equivalence relations on semigroups [13]. Let M be a monoid, that is, a semigroup with an identity, and let $s, t \in M$ be any two elements of M. The Green relations on M, denoted by $\mathcal{L}, \mathcal{R}, \mathcal{J}$ and \mathcal{H}, are defined as follows: $s \mathcal{L} t \iff Ms = Mt$, $s \mathcal{R} t \iff sM = tM$, $s \mathcal{J} t \iff MsM = MtM$, and $s \mathcal{H} t \iff s \mathcal{L} t$ and $s \mathcal{R} t$. For $\rho \in \{\mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{H}\}$, M is ρ-trivial if and only if $(s, t) \in \rho$ implies $s = t$ for all $s, t \in M$. A language is ρ-trivial if and only if its syntactic monoid is ρ-trivial. In this paper we consider only regular ρ-trivial languages. \mathcal{H}-trivial regular languages are exactly the star-free languages [13], and \mathcal{L}-, \mathcal{R}-, and \mathcal{J}-trivial regular languages are exactly the trivalent languages [13].

* This work was supported by the Natural Sciences and Engineering Research Council of Canada under grant No. OGP0000871 and a Postgraduate Scholarship.
** Present address: Optumsoft, Inc., 275 Middlefield Rd, Suite 210, Menlo Park, CA 94025, USA.

© Springer-Verlag Berlin Heidelberg 2013
languages are all subclasses of the class of star-free languages. The class of J-trivial languages is the intersection of the classes of R- and L-trivial languages.

A language $L \subseteq \Sigma^*$ is piecewise-testable if it is a finite boolean combination of languages of the form $\Sigma^*a_1\Sigma^* \cdots \Sigma^*a_l\Sigma^*$, where $a_i \in \Sigma$. Simon [15,16] proved in 1972 that a language is piecewise-testable if and only if it is J-trivial. A biautomaton is a finite automaton which can read the input word alternatively from left and right. In 2011 Klíma and Polák [9] showed that a language is piecewise-testable if and only if it is accepted by an acyclic biautomaton; here self-loops are allowed, as they are not considered cycles.

In 1979 Brzozowski and Fich [1] proved that a regular language is R-trivial if and only if its minimal DFA is partially ordered, that is, it is acyclic as above. They also showed that R-trivial regular languages are finite boolean combinations of languages $\Sigma_i^*a_1\Sigma^* \cdots \Sigma_i^*a_l\Sigma^*$, where $a_i \in \Sigma$ and $\Sigma_i \subseteq \Sigma \setminus \{a_i\}$. Recently Jirásková and Masopust proved a tight upper bound on the state complexity of reversal of R-trivial languages [8].

In the past, the syntactic complexity of the following subclasses of regular languages was considered: In 1970 Maslov [11] noted that n^n was a tight upper bound on the number of transformations performed by a DFA of n states. In 2003–2004, Holzer and König [7], and Krawetz, Lawrence and Shallit [10] studied unary and binary languages. In 2010 Brzozowski and Ye [5] examined ideal and closed regular languages. In 2012 Brzozowski, Li and Ye studied prefix-, suffix-, bifix-, and factor-free regular languages [3], Brzozowski and Li [2] considered the class of star-free languages and three of its subclasses, and Brzozowski and Liu [4] studied finite/cofinite, definite, and reverse definite languages, where L is definite (reverse-definite) if it can be decided whether a word w belongs to L by examining the suffix (prefix) of w of some fixed length.

We state basic definitions and facts in Section 2. In Sections 3 and 4 we prove tight upper bounds on the syntactic complexities of R- and J-trivial regular languages, respectively. Section 5 concludes the paper. Omitted proofs can be found at http://arxiv.org/abs/1208.4650.

2 Preliminaries

Let Q be a non-empty finite set with n elements, and assume without loss of generality that $Q = \{1,2,\ldots,n\}$. There is a linear order on Q, namely the natural order $<$ on integers. If X is a non-empty subset of Q, then the maximal element in X is denoted by $\max(X)$. A partition π of Q is a collection $\pi = \{X_1,X_2,\ldots,X_m\}$ of non-empty subsets of Q such that $Q = X_1 \cup X_2 \cup \cdots \cup X_m$, and $X_i \cap X_j = \emptyset$ for all $1 \leq i < j \leq m$. We call each subset X_i a block in π. For any partition π of Q, let $\operatorname{Max}(\pi) = \{\max(X) \mid X \in \pi\}$. The set of all partitions of Q is denoted by Π_Q. We define a partial order \preceq on Π_Q such that, for any $\pi_1,\pi_2 \in \Pi_Q$, $\pi_1 \preceq \pi_2$ if and only if each block of π_1 is contained in some block of π_2. We say π_1 refines π_2 if $\pi_1 \preceq \pi_2$. The poset (Π_Q,\preceq) is a finite lattice: For any $\pi_1,\pi_2 \in \Pi_Q$, the meet $\pi_1 \land \pi_2$ is the \preceq-largest partition that refines both π_1 and π_2, and the join $\pi_1 \lor \pi_2$ is the \preceq-smallest partition that is refined by both π_1 and π_2. From now on, we refer to the lattice (Π_Q,\preceq) simply as Π_Q.

Syntactic Complexity of R- and J-Trivial Regular Languages 161