Triangular Embeddings of Tensor Products of Graphs

A. Bouchet, Cedex † France
B. Mohar, Ljubljana, Yugoslavia

ABSTRACT

Given triangular embeddings of graphs G and H and an assignment of signs ± 1 to the angles of the embedding of G, with the property that the sum of the signs around each vertex of G is ± 1 and the product of the four signs at each edge is $+1$, triangular embeddings of the tensor (also called categorical) product $G \otimes H$ of G and H are constructed. This generalizes previously known results about embeddings of tensor products of graphs.

1. INTRODUCTION

Our graphs will be finite and simple. By a surface we mean a compact surface without boundary. We assume that the reader is familiar with basic notions of topological graph theory, and refer to the book [GT].

Let G and H be graphs and let $G \cdot H$ denote some graph product of G and H. It is an important problem to determine any genus embeddings of $G \cdot H$, i.e., embeddings of the graph with the minimal possible genus, knowing some genus embeddings of G and H.

† Supported in part by P.R.C. Mathématiques et Informatique.
‡ Supported in part by the Research Council of Slovenia, Yugoslavia.
In the case of the Cartesian product \(\times \) of graphs, several results about embeddings of the graph \(G \times H \) are known [P1, P2, W]. Cf. also [GT]. There are also some works about the embeddings of the lexicographic [B3] and the tensor products [B4, Z] of graphs. In this paper we consider the tensor (categorical) product.

If \(G \) and \(H \) are graphs then the tensor product of \(G \) and \(H \) is the graph \(G \otimes H \) having vertex set \(V(G \otimes H) = V(G) \times V(H) \) and with vertices \((u, v)\) and \((u', v')\) being adjacent if and only if \(u \) is adjacent to \(u' \) in \(G \) and \(v \) is adjacent to \(v' \) in \(H \). By some authors this product is also called conjunction, or the categorical product.

We shall restrict ourselves to a particular, simpler but still difficult problem: Let \(G \) and \(H \) be given graphs together with triangular embeddings \(i : G \to \Sigma_1 \) and \(j : H \to \Sigma_2 \). Recall that "triangular" means that all the faces of the embeddings are triangles. The problem is to find a triangular embedding of the tensor product \(G \otimes H \). Notice that triangular embeddings of simple graphs are always minimal genus embeddings (either orientable, or nonorientable). It will be assumed, moreover, that all the vertices of the graph \(G \) have odd degrees. For our problem this is a very natural condition. Namely, in order for the graph \(G \otimes H \) to have triangular embeddings, the neighbors of each vertex must span a cycle. The neighborhood graph of a vertex \((u, v)\) in \(G \otimes H \) is equal to the tensor product of neighborhood graphs of \(v \) and \(u \) in \(G \) and \(H \), respectively. If these are both even cycles, for example, their product is disconnected, and hence \(G \otimes H \) trivially admits no triangular embeddings.

We construct triangular embeddings of \(G \otimes H \), \(\kappa : G \otimes H \to \Sigma \), with the property that there are (simplicial) maps \(\pi_1 : \Sigma \to \Sigma_1 \) and \(\pi_2 : \Sigma \to \Sigma_2 \) such that each face in \(\Sigma \) is projected bijectively onto a face in \(\Sigma_i \), \(i = 1, 2 \). Mappings \(\pi_i \) with this property are called coverings with folds (cf. [B1, B2] for more details about such mappings). Combinatorially they define simplicial maps between simplicial complexes corresponding to the triangular embeddings. In our construction, the mapping \(\pi_1 \) will have no folds, so topologically it will be a branched covering of surfaces with branch points at vertices of \(G \) only. Our construction uses certain valuation of the angles of the embedding of the graph \(G \). We believe that such valuations always exist. Our main result, Theorem 1, generalizes previous results [B4] on triangular embeddings and the genus of tensor products of graphs.