25. Supermartingales and Submartingales

In Chapter 24 we defined a martingale via an equality for certain conditional expectations. If we replace that equality with an inequality we obtain supermartingales and submartingales. Once again (Ω, \mathcal{F}, P) is a probability space that is assumed given and fixed, and $(\mathcal{F}_n)_{n \geq 1}$ is an increasing sequence of σ-algebras.

Definition 25.1. A sequence of random variables $(X_n)_{n \geq 0}$ is called a submartingale (respectively a supermartingale) if

(i) $E\{|X_n|\} < \infty$, each n;

(ii) X_n is \mathcal{F}_n-measurable, each n;

(iii) $E\{X_n | \mathcal{F}_m\} \geq X_m$ a.s. (resp. $\leq X_m$ a.s.) each $m \leq n$.

The sequence $(X_n)_{n \geq 0}$ is a martingale if and only if it is a submartingale and a supermartingale.

Theorem 25.1. If $(M_n)_{n \geq 0}$ is a martingale, and if φ is convex and $\varphi(M_n)$ is integrable for each n, then $(\varphi(M_n))_{n \geq 0}$ is a submartingale.

Proof. Let $m \leq n$. Then $E\{M_n | \mathcal{F}_m\} = M_m$ a.s., so $\varphi(E\{M_n | \mathcal{F}_m\}) = \varphi(M_m)$ a.s., and since φ is convex by Jensen's inequality (Theorem 23.9) we have

$$E\{\varphi(M_n) | \mathcal{F}_m\} \geq \varphi(E\{M_n | \mathcal{F}_m\}) = \varphi(M_m).$$

Corollary 25.1. If $(M_n)_{n \geq 0}$ is a martingale then $X_n = |M_n|$, $n \geq 0$, is a submartingale.

Proof. $\varphi(x) = |x|$ is a convex, so apply Theorem 25.1.

Theorem 25.2. Let T be a stopping time bounded by $C \in \mathbb{N}$ and let $(X_n)_{n \geq 0}$ be a submartingale. Then $E\{X_T\} \leq E\{X_C\}$.

Proof. The proof is analogous to the proof of Theorem 24.2, so we omit it.

The next theorem shows a connection between submartingales and martingales.
Theorem 25.3 (Doob Decomposition). Let \(X = (X_n)_{n \geq 0} \) be a submartingale.

There exists a martingale \(M = (M_n)_{n \geq 0} \) and a process \(A = (A_n)_{n \geq 0} \) with \(A_{n+1} \geq A_n \) a.s. and \(A_{n+1} \) being \(F_n \)-measurable, each \(n \geq 0 \), such that

\[
X_n = X_0 + M_n + A_n, \quad \text{with } M_0 = A_0 = 0.
\]

Moreover such a decomposition is a.s. unique.

Proof. Define \(A_0 = 0 \) and

\[
A_n = \sum_{k=1}^{n} E\{X_k - X_{k-1} | F_{k-1}\} \quad \text{for } n \geq 1.
\]

Since \(X \) is a submartingale we have \(E\{X_k - X_{k-1} | F_{k-1}\} \geq 0 \) each \(k \), hence \(A_{k+1} \geq A_k \) a.s., and also \(A_{k+1} \) being \(F_k \)-measurable. Note also that

\[
E\{X_n | F_{n-1}\} - X_{n-1} = E\{X_n - X_{n-1} | F_{n-1}\} = A_n - A_{n-1},
\]

and hence

\[
E\{X_n | F_{n-1}\} - A_n = X_{n-1} - A_{n-1};
\]

but \(A_n \in F_{n-1} \), so

\[
E\{X_n - A_n | F_{n-1}\} = X_{n-1} - A_{n-1}. \tag{25.1}
\]

Letting \(M_n = X_n - A_n \) we have from (25.1) that \(M \) is a martingale and we have the existence of the decomposition.

As for uniqueness, suppose

\[
X_n = X_0 + M_n + A_n, \quad n \geq 0,
\]

\[
X_n = X_0 + L_n + C_n, \quad n \geq 0,
\]

are two such decompositions. Subtracting one from the other gives

\[
L_n - M_n = A_n - C_n. \tag{25.2}
\]

Since \(A_n, C_n \) are \(F_{n-1} \) measurable, \(L_n - M_n \) is \(F_{n-1} \) measurable as well; therefore

\[
L_n - M_n = E\{L_n - M_n | F_{n-1}\} = L_{n-1} - M_{n-1} = A_{n-1} - C_{n-1} \quad \text{a.s.}
\]

Continuing inductively we see that \(L_n - M_n = L_0 - M_0 = 0 \) a.s. since \(L_0 = M_0 = 0 \). We conclude that \(L_n = M_n \) a.s., whence \(A_n = C_n \) a.s. and we have uniqueness.

Corollary 25.2. Let \(X = (X_n)_{n \geq 0} \) be a supermartingale. There exists a unique decomposition

\[
X_n = X_0 + M_n - A_n, \quad n \geq 0
\]

with \(M_0 = A_0 = 0, (M_n)_{n \geq 0} \) a martingale, and \(A_k \) being \(F_{k-1} \)-measurable with \(A_k \geq A_{k-1} \) a.s.