Extracting Egomotion from Optic Flow: Limits of Accuracy and Neural Matched Filters

Hans-Jürgen Dahmen1, Mattias O. Franz2 and Holger G. Krapp3

1Lehrstuhl für Biokybernetik, Biologisches Institut, Universität Tübingen, Tübingen; 2DaimlerChrysler AG, Research and Technology, Ulm; 3Lehrstuhl für Neurobiologie, Universität Bielefeld, Bielefeld, Germany

Contents

1 Abstract ... 144
2 Introduction .. 145
3 Limiting factors for the extraction of egomotion parameters 147
 3.1 An iterative procedure for extracting egomotion parameters from optic flow .. 147
 3.2 "One shot" estimates and a matched filter for estimating egomotion parameters .. 148
 3.3 What influences the accuracy of estimating egomotion parameters from optic flow? .. 150
 3.3.1 The number of fiducial points .. 150
 3.3.2 The angular separation of the cones in a two cone visual field .. 152
 3.3.3 The size of visual cones and the relative orientation of R and T for iterated and one-shot estimates .. 155
 3.3.4 The structure of the environment: moving relative to planes with or without “clouds” .. 155
 3.3.5 General rules for extracting egomotion parameters from optic flow .. 157
4 Fly tangential neurones and matched filters for optic flow fields .. 158
 4.1 Are tangential neurones “one shot” estimators for egomotion? .. 158
 4.2 Optimized matched filters .. 160
 4.3 Modelling anisotropies in distances and flight directions .. 161
5 Discussion .. 162
 5.1 Sampling the visual field for robust egomotion estimates .. 162
 5.2 Simplified estimation procedures and specific environments .. 164
1. Abstract

In this chapter we review two pieces of work aimed at understanding the principal limits of extracting egomotion parameters from optic flow fields (Dahmen et al. 1997) and the functional significance of the receptive field organization of motion sensitive neurones in the fly’s visual system (Franz and Krapp 1999). In the first study, we simulated noisy image flow as it is experienced by an observer moving through an environment of randomly distributed objects for different magnitudes and directions of simultaneous rotation \mathbf{R} and translation \mathbf{T}. Estimates \mathbf{R}', of the magnitude and direction of \mathbf{R}, and \mathbf{t}', of the direction of \mathbf{T}, were derived from samples of this perturbed image flow and were compared with the original vectors using an iterative procedure proposed by Koenderink and van Doorn (1987). The sampling was restricted to one or two cone-shaped subregions of the visual field, which had variable angular size and viewing directions oriented either parallel or orthogonal with respect to the egomotion vectors \mathbf{R} and \mathbf{T}. We also investigated the influence of environmental structure, such as various depth distributions of objects and the role of planar or spherical surfaces. From our results we derive two general rules how to optimize egomotion estimates: (i) Errors are minimized by expanding the field of view. (ii) Sampling image motion from opposite directions improves the accuracy, particularly for small fields of view.

From the iterative algorithm we derived a fast, non-iterative “matched filter” to extract \mathbf{R}' and \mathbf{t}', which under many conditions yields results very similar to those obtained by iteration. Its structure shows striking similarities to the receptive field organization of wide-field motion sensitive neurones in the visual system of the fly (Krapp and Hengstenberg 1996), but there are characteristic differences. To explain these differences, we developed a more elaborate version of this approach in which the statistical properties of the fly’s environment and behaviour, i.e. the distribution of object distances and flight directions, are taken into account. A matched filter was directly derived from an optimization principle that minimizes the variance of the filter output caused by noise and distance variabilities. The optimized filters were then compared to the detailed organization of the receptive fields of the fly’s wide-field neurones. Our analysis suggests that these neurones are not optimal for estimating the magnitude of \mathbf{R} and \mathbf{t}', but rather for consistently encoding the presence and the sign of rotatory or translatory flow fields along a particular set of axes.