vector fields on the space of quasihomogeneous polynomials of degree \(N = \deg f_0 \) is trivial (i.e., equal to \(\{0\} \)).

In other words, \(f \) satisfies Condition \(B \) if \(S_0^1 = 0 \). Thus, Condition \(B \) is actually a condition only on \(f_0 \).

Theorem BT. If \(f \) satisfies Condition \(B \), then Theorem \(T_{r,p} \) holds for \(r = p \geq 1 \).

Definition. The negative Lie algebra \(g^- \) of type \(v \) is defined to be the algebra of vector fields of the form \(\sum v_i \delta_i \) such that all monomials of each of the polynomials \(v_i \) are of degree strictly smaller than the degree of the monomial \(x_i \) (i.e., than \(v_i \)).

Note that \(g^- \) is a finite-dimensional Lie algebra.

Definition. The series \(f = f_0 + f_1 + \cdots \) is said to satisfy Condition \(C \) if the isotropy algebra of the point \(f_0 \) under the action of the negative Lie algebra \(g^- \) on the space of polynomials of degree no higher than \(N = \deg f_0 \) is trivial (i.e., equal to \(\{0\} \)).

Note that Condition \(C \), too, is imposed only on \(f_0 \).

Theorem CT. If \(f \) satisfies Condition \(C \), then \(I_f^+ = A \cap I_f \).

Corollary. Let \(f \) satisfy Condition \(C \) and let \(e_1, e_2, \ldots \) be quasihomogeneous polynomials of all possible degrees \(N + p, p \geq 0 \), whose images under the natural maps \(\mathcal{A}_p \to A_p^\infty \) form bases in the spaces \(A_p^\infty \) of the spectral sequence. Then the images of \(e_1, e_2, \ldots \) in the local algebra \(Q_f = A/I_f \) are \(\mathbb{C} \)-linearly independent.

In other words, the tangent space of the deformation \(f + \sum \lambda_i e_i \) intersects the tangent space to the orbit of \(f \) at a single point.

Chapter 2

Monodromy Groups of Critical Points

Morse theory studies the restructurings, perestroikas, or metamorphoses that the level set \(f^{-1}(x) \) of a real function \(f: M \to \mathbb{R} \), defined on a manifold \(M \), undergoes as \(x \) passes through the critical values of \(f \). The Picard-Lefschetz theory is the complex analogue of Morse theory. In the complex case the set of critical values does not divide the range \(\mathbb{C} \) of a complex-valued function into connected components, and no restructurings occur: all level manifolds close to a critical one are topologically identical. For this reason, in the complex case, rather than passing through a critical value, one has to go around it in the plane \(\mathbb{C} \) where the function takes its values.

If we fix a small circle that goes around the critical value, then to each point of the circle there corresponds a nonsingular level manifold of the function. The set of all such levels is a fibration over the circle. Going around the circle defines
§1. The Picard-Lefschetz Theory

Here we define the monodromy groups and the related notions of vanishing cycles and Dynkin diagrams, and then we describe the Picard-Lefschetz formulas.

1.1. Topology of the Nonsingular Level Manifold. Consider a holomorphic function $f: \mathbb{C}^n \to \mathbb{C}$, $z \mapsto t$, which has an isolated critical point $z = a$ with critical value $f(a) = \alpha$. Pick a sufficiently small ball $U \subset \mathbb{C}^n$ centered at a such that U contains no other critical points of f. Then the level set $f^{-1}(\alpha)$ is an $(n-1)$-dimensional complex manifold, nonsingular everywhere in U except for the point a.

Theorem ([247]). The manifold $f^{-1}(\alpha)$ is transverse to the boundary ∂U of the ball U for all sufficiently small values of the radius of U.

Fix U such that the assertion of the theorem holds true for U and for all balls centered at a and contained in U and choose a sufficiently small neighborhood $T \subset \mathbb{C}$ of the critical value α, such that for every $t \in T$, $t \neq \alpha$, the level manifold $f^{-1}(t)$ is nonsingular inside U and transverse to ∂U.

In this way there arises inside U a family $J_t = f^{-1}(t) \cap U$, $t \in T$, of complex hypersurfaces with boundary $\partial J_t = J_t \cap \partial U$.

Definition. The set $J_t = f^{-1}(t) \cap U$, $t \neq \alpha$, is called a nonsingular level set of f near the critical point a.

The family of hypersurfaces J_t, $t \in T$, fills the domain $V_T = f^{-1}(T) \cap U$. Let T' and V_T' denote the punctured neighborhood $T \setminus \{\alpha\}$ of the critical value α and its preimage $f^{-1}(T') = V_T \setminus V_a$, respectively. The function f induces maps $V_T \to T$ and $V_T' \to T'$ (Fig. 12)

It follows from the implicit function theorem that the maps $f: V_T' \to T'$ and $f|_{V_T}: \partial V_T \to T$, where $\partial V_T = V_T \cap \partial U$, are locally trivial fibrations.

Remark. Since the disk T is contractible, the fibration $\partial V_T \to T$ is trivial. Moreover, the direct product structure in this fibration is unique up to homotopy.

Let μ be the multiplicity of the critical point a. The topology of the nonsingular level manifold V_t is described by the following theorem.

Theorem ([247]). V_t is homotopy equivalent to a wedge (bouquet) of $(n-1)$-dimensional spheres.