I. Methods in the Theory of Sheaves and Stein Spaces

A.L. Onishchik

Translated from the Russian by J. Nunemacher

Contents

Introduction ... 2
Chapter 1. Sheaves ... 3
1. Definition of a Sheaf .. 3
2. Sheaves of Germs of Functions; Presheaves 4
3. The Simplest Concepts Related to Sheaves of Groups, Algebras, and Modules .. 6
4. The Lifting of Sections 8
5. The Extension of Sections 11
6. Direct and Inverse Images 12
Chapter 2. Complex Spaces 13
1. Analytic Local Algebras 13
2. Analytic Sets ... 15
3. Ringed Spaces .. 16
4. Coherent Sheaves of Modules 18
5. Analytic Spaces .. 20
6. Normal Spaces ... 23
7. Constructions of Complex Spaces 25
8. Holomorphic Fiber Bundles 26
9. Meromorphic Functions and Divisors 28
Chapter 3. Cohomology with Values in a Sheaf 29
1. The Obstruction to the Lifting of a Section 30
2. Simplicial Structures and Čech Cohomology 31

S. G. Gindikin et al. (eds.), Several Complex Variables IV
© Springer-Verlag Berlin Heidelberg 1990
Introduction

This article is devoted to cohomological methods in complex analysis, which have undergone intensive development in the course of the last 35 years. The basic object of study here is a complex analytic space or, roughly speaking, a complex analytic manifold with singular points. Analytic spaces belong (as do also analytic and differentiable manifolds, supermanifolds, and algebraic varieties) to the class of mathematical structures which are defined by fixing on a given topological space a certain stock of continuous local functions. An adequate means for describing such a structure is the concept of a sheaf, which is discussed in Chapter 1. In Chapter 2 we consider first the technically convenient concept of a ringed space, i.e., a space endowed with a sheaf of rings (or algebras), and then a particular case of it—the concept of a complex analytic space, which is fundamental for what follows. We also define here a coherent analytic sheaf. In Chapter 3 we discuss the theory of cohomology with values in a sheaf of abelian groups and indicate its simplest applications to problems of analysis, for example, to the solution of the Cousin problems for poly-cylindrical domains. In Chapter 4 we give a survey of results related to the so-called Stein spaces. These remarkable complex spaces, which can be defined, roughly speaking, as spaces with a very large stock of global analytic functions, emerged historically as the first objects in complex analysis on which the methods of cohomology were tried.