Chapter VI. Geometrically Finite Groups

This chapter is an exploration of geometrically finite discrete subgroups of \mathbb{M}; that is, groups that have (convex) fundamental polyhedra in \mathbb{H}^3 with finitely many sides. One of our main objectives is to give a criterion for a group to be geometrically finite in terms of its action at the limit set; this criterion will then be used in Chapter VII to show that, under suitable conditions, the combination of two geometrically finite groups is again geometrically finite.

A geometrically finite group can also be described in terms of the underlying manifold $(\mathbb{H}^3 \cup \Omega(G))/G$; this manifold need not be compact, but its non-compact ends can be completely described in terms of a finite set of topologically distinct possibilities.

VI.A. The Boundary at Infinity of a Fundamental Polyhedron

A.1. Let G be a discrete subgroup of \mathbb{L}^n, and let $D \subset \mathbb{H}^n$ be a fundamental polyhedron for G. By definition, D is convex, so the different sides of D lie on different hyperplanes. In fact, different sides are identified by different elements of G.

Proposition. Let $s_1 \neq s_2$ be sides of D, and let g_1 and g_2 be the corresponding side pairing transformations; i.e., there are sides s_1' and s_2', so that $g_m(s_m) = s_m'$. Then $g_1 \neq g_2$.

Proof. The hyperplane on which s_1' lies separates D from $g_1(D)$; in particular, it separates s_2' from $g_1(s_2)$. Hence $g_1(s_2)$ is not a side of D.

A.2. For a polyhedron $D \subset \mathbb{B}^n$ we denote the relative boundary of D in \mathbb{B}^n by ∂D; we denote the intersection of the Euclidean boundary of D with $\partial \mathbb{B}^n$ by $\partial ^* D$. The relative interior of ∂D in $\partial \mathbb{H}^n$ is denoted by $\partial^* D$.

If $x \in \partial D$, and x lies on the boundary of the side s of D, then we say that s abuts x.

A.3. Thus far, the term "fundamental domain" is defined only for subgroups of \mathbb{M} (see II.G). The generalization to subgroups of \mathbb{L}^n, acting on \mathbb{E}^{n-1}, is obvious.
Proposition. If \(D \) is a fundamental polyhedron for the discrete subgroup \(G \) of \(\mathbb{P}^n \), then \(\partial D \) is a fundamental domain for \(G \).

Proof. It is immediate from the definition that no two points of \(\partial D \) are equivalent under \(G \). The sides of \(\partial D \) are the boundaries of the sides of \(D \). These are paired by the same elements that pair the sides of \(D \).

In \(\mathbb{B}^n \), only finitely many supporting hyperplanes of sides of \(D \) meet any compact set. If \(\{s_m\} \) is a sequence of sides of \(D \), and \(Q_m \) is the supporting hyperplane of \(s_m \), then \(\text{diam}_E(Q_m) \to 0 \); hence \(\text{diam}_E(\partial s_m) \to 0 \).

If \(x \) is a point on the boundary of \(\partial D \), where \(x \) does not lie on any side, then there is a sequence of sides of \(D \) accumulating to \(x \); hence there is a sequence of side pairing transformations \(\{g_m\} \) so that for all \(z \in \partial D \), \(g_m(z) \to x \). Hence \(x \) is a limit point of \(G \).

Let \(x \) be a point on the boundary of \(\partial D \), where \(x \in \mathbb{O} \). Then \(x \) lies on a side of \(\partial D \), so there is a side \(s \) of \(D \) abutting \(x \). There are only finitely many translates of \(D \) in a neighborhood of \(s \), hence there are only finitely many translates of \(\partial D \) in a neighborhood of \(x \).

Finally, if \(z \in \mathbb{O}(G) \), then choose a sequence of points \(\{x_m\} \) in \(\mathbb{B}^n \), with \(x_m \to z \). For each \(x_m \) there is an element \(g_m \in G \), with \(x_m \in g_m(D) \). There are only a finite number of distinct elements in this sequence, for otherwise, we would have \(\text{diam}_E g_m(D) \to 0 \), contradicting the assumption that \(z \in \mathbb{O} \). Hence there is a \(g \in G \) with \(g(z) \) in the closure of \(\partial D \). \(\square \)

A.4. In \(\mathbb{B}^n \), a horosphere \(S \) is a Euclidean \((n - 1)\)-sphere which is tangent to \(\partial \mathbb{B}^n \), and which, except for the point of tangency, lies in \(\mathbb{B}^n \). The open Euclidean ball bounded by \(S \) is called a horoball.

The point of tangency of \(S \) with \(\partial \mathbb{B}^n \) is the center, or vertex, of \(S \). It is also the center, or vertex, of the horoball bounded by \(S \).

A horosphere in \(\mathbb{H}^n \), centered at a finite point \(x \), is a Euclidean sphere tangent to \(\partial \mathbb{H}^n \), which, except for the point of tangency, lies in \(\mathbb{H}^n \). A horosphere centered at \(\infty \) is a Euclidean plane parallel to \(\partial \mathbb{H}^n \).

A.5. Proposition. Let \(G \) be a discrete subgroup of \(\mathbb{M} \), where \(G \) contains \(j(z) = z + 1 \). Then the horoball \(T = \{(z, t) \in \mathbb{H}^3 \mid t > 1\} \) is precisely invariant under \(\text{Stab}(\infty) \).

Proof. Let \(J = \text{Stab}(\infty) \); by II.C.6, no element of \(J \) is loxodromic. Hence every element of \(J \) lies in \(\mathbb{A}^2 \), and every element of \(\mathbb{A}^2 \) keeps every horosphere centered at \(\infty \) invariant.

If
\[
g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]
is any element of \(G \), then by II.C.5, either \(c = 0 \), in which case \(g \in J \), or \(|c| \geq 1 \). In the latter case, the radius of the isometric circle of \(g \) is at most one. Write