Chapter VI. Geometrically Finite Groups

This chapter is an exploration of geometrically finite discrete subgroups of \(\mathbb{M} \); that is, groups that have (convex) fundamental polyhedra in \(\mathbb{H}^3 \) with finitely many sides. One of our main objectives is to give a criterion for a group to be geometrically finite in terms of its action at the limit set; this criterion will then be used in Chapter VII to show that, under suitable conditions, the combination of two geometrically finite groups is again geometrically finite.

A geometrically finite group can also be described in terms of the underlying manifold \((\mathbb{H}^3 \cup \Omega(G))/G \); this manifold need not be compact, but its non-compact ends can be completely described in terms of a finite set of topologically distinct possibilities.

VI.A. The Boundary at Infinity of a Fundamental Polyhedron

A.1. Let \(G \) be a discrete subgroup of \(\mathbb{L}^n \), and let \(D \subset \mathbb{H}^n \) be a fundamental polyhedron for \(G \). By definition, \(D \) is convex, so the different sides of \(D \) lie on different hyperplanes. In fact, different sides are identified by different elements of \(G \).

Proposition. Let \(s_1 \neq s_2 \) be sides of \(D \), and let \(g_1 \) and \(g_2 \) be the corresponding side pairing transformations; i.e., there are sides \(s_1' \) and \(s_2' \), so that \(g_m(s_m) = s'_m \). Then \(g_1 \neq g_2 \).

Proof. The hyperplane on which \(s_1' \) lies separates \(D \) from \(g_1(D) \); in particular, it separates \(s_2' \) from \(g_1(s_2) \). Hence \(g_1(s_2) \) is not a side of \(D \).

A.2. For a polyhedron \(D \subset \mathbb{B}^n \) we denote the relative boundary of \(D \) in \(\mathbb{B}^n \) by \(\partial D \); we denote the intersection of the Euclidean boundary of \(D \) with \(\partial \mathbb{B}^n \) by \(\partial^D \). The relative interior of \(\partial D \) in \(\partial \mathbb{H}^n \) is denoted by \(\mathring{\partial} D \).

If \(x \in \partial D \), and \(x \) lies on the boundary of the side \(s \) of \(D \), then we say that \(s \) abuts \(x \).

A.3. Thus far, the term "fundamental domain" is defined only for subgroups of \(\mathbb{M} \) (see II.G). The generalization to subgroups of \(\mathbb{L}^n \), acting on \(\mathbb{E}^{n-1} \), is obvious.
Proposition. If D is a fundamental polyhedron for the discrete subgroup G of \mathbb{P}^n, then $^c\mathcal{D}D$ is a fundamental domain for G.

Proof. It is immediate from the definition that no two points of $^c\mathcal{D}D$ are equivalent under G. The sides of $^c\mathcal{D}D$ are the boundaries of the sides of D. These are paired by the same elements that pair the sides of D.

In \mathbb{B}^n, only finitely many supporting hyperplanes of sides of D meet any compact set. If $\{s_m\}$ is a sequence of sides of D, and Q_m is the supporting hyperplane of s_m, then $\text{dia}_E(Q_m) \to 0$; hence $\text{dia}_E(\partial s_m) \to 0$.

If x is a point on the boundary of $^c\mathcal{D}D$, where x does not lie on any side, then there is a sequence of sides of D accumulating to x; hence there is a sequence of side pairing transformations $\{g_m\}$ so that for all $z \in ^c\mathcal{D}D$, $g_m(z) \to x$. Hence x is a limit point of G.

Let x be a point on the boundary of $^c\mathcal{D}D$, where $x \in \Omega$. Then x lies on a side of $^c\mathcal{D}D$, so there is a side s of D abutting x. There are only finitely many translates of D in a neighborhood of s, hence there are only finitely many translates of $^c\mathcal{D}D$ in a neighborhood of x.

Finally, if $z \in \Omega(G)$, then choose a sequence of points $\{x_m\}$ in \mathbb{B}^n, with $x_m \to z$. For each x_m there is an element $g_m \in G$, with $x_m \in g_m(D)$. There are only a finite number of distinct elements in this sequence, for otherwise, we would have $\text{dia}_E g_m(D) \to 0$, contradicting the assumption that $z \in \Omega$. Hence there is a $g \in G$ with $g(z)$ in the closure of $^c\mathcal{D}D$. \hfill \square

A.4. In \mathbb{B}^n, a horosphere S is a Euclidean $(n - 1)$-sphere which is tangent to $\partial \mathbb{B}^n$, and which, except for the point of tangency, lies in \mathbb{B}^n. The open Euclidean ball bounded by S is called a horoball.

The point of tangency of S with $\partial \mathbb{B}^n$ is the center, or vertex, of S. It is also the center, or vertex, of the horoball bounded by S.

A horosphere in \mathbb{H}^n, centered at a finite point x, is a Euclidean sphere tangent to $\partial \mathbb{H}^n$, which, except for the point of tangency, lies in \mathbb{H}^n. A horosphere centered at ∞ is an Euclidean plane parallel to $\partial \mathbb{H}^n$.

A.5. Proposition. Let G be a discrete subgroup of \mathbb{M}, where G contains $j(z) = z + 1$. Then the horoball $T = \{(z,t) \in \mathbb{H}^3 | t > 1\}$ is precisely invariant under $\text{Stab}(\infty)$.

Proof. Let $J = \text{Stab}(\infty)$; by II.C.6, no element of J is loxodromic. Hence every element of J lies in \mathbb{A}^2, and every element of \mathbb{A}^2 keeps every horosphere centered at ∞ invariant.

If $$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ is any element of G, then by II.C.5, either $c = 0$, in which case $g \in J$, or $|c| \geq 1$. In the latter case, the radius of the isometric circle of g is at most one. Write