Chapter XI

Simple algebras over A-fields

§ 1. Ramification. In this Chapter, \(k \) will be an A-field; we use all the notations introduced for such fields in earlier Chapters, such as \(k_A, k_v, r_v, \) etc. We shall be principally concerned with a simple algebra \(A \) over \(k \); as stipulated in Chapter IX, it is always understood that \(A \) is central, i.e. that its center is \(k \), and that it has a finite dimension over \(k \); by corollary 3 of prop. 3, Chap. IX-1, this dimension can then be written as \(n^2 \), where \(n \) is an integer \(\geq 1 \). We use \(A_v \), as explained in Chapters III and IV, for the algebra \(A_v = A \otimes k_v \) over \(k_v \), where, in agreement with Chapter IX, it is understood that the tensor-product is taken over \(k \). By corollary 1 of prop. 3, Chap. IX-1, this is a simple algebra over \(k_v \); therefore, by tho 1 of Chap. IX-1, it is isomorphic to an algebra \(M_{m(v)}(D(v)) \), where \(D(v) \) is a division algebra over \(k_v \); the dimension of \(D(v) \) over \(k_v \) can then be written as \(d(v)^2 \), and we have \(m(v)d(v) = n \); the algebra \(D(v) \) is uniquely determined up to an isomorphism, and \(m(v) \) and \(d(v) \) are uniquely determined. One says that \(A \) is unramified or ramified at \(v \) according as \(A_v \) is trivial over \(k_v \) or not, i.e. according as \(d(v) = 1 \) or \(d(v) > 1 \).

Theorem 1. Let \(A \) be a simple algebra over an A-field \(k \); let \(\alpha \) be a finite subset of \(A \), containing a basis of \(A \) over \(k \). For each finite place \(v \) of \(k \), call \(\alpha_v \) the \(r_v \)-module generated by \(\alpha \) in \(A_v \). Then, for almost all \(v \), \(A_v \) is trivial over \(k_v \) and \(\alpha_v \) is a maximal compact subring of \(A_v \).

By corollary 1 of th. 3, Chap. III-1, we may assume that \(\alpha \) is a basis of \(A \) over \(k \), and that \(1_A \) belongs to it. Call \(\tau \) the reduced trace in \(A \); by prop. 6 of Chap. IX-2, it is not 0, and its \(k_v \)-linear extension to \(A_v \) is the reduced trace in \(A_v \). By lemma 3 of Chap. III-3, we may identify the underlying vector-space of \(A \) over \(k \) with its algebraic dual by putting \([x,y] = \tau(xy) \). Now, as in th. 3 of Chap. IV-2, take a “basic character” \(\chi \) of \(k_A \). By corollary 1 of that theorem, \(\chi_v \) is of order 0 for almost all \(v \); by corollary 3 of the same theorem, the \(k_v \)-lattice \(\alpha_v \) is its own dual for almost all \(v \), when \(A_v \) is identified with its topological dual by putting \(\langle x,y \rangle = \chi_v(\tau(xy)) \). By corollary 2 of th. 3, Chap. III-1, \(\alpha_v \) is a compact subring of \(A_v \) for almost all \(v \). Therefore, at almost all places \(v \) of \(k \), the assumptions of corollary 2 of prop. 5, Chap. X-2, are valid, the conclusion being as stated in our theorem.
§ 2. The zeta-function of a simple algebra. Let all notations be as in § 1, and let \(\alpha \) be a basis of \(A \) over \(k \). By th. 1 of § 1, \(\alpha_v \) is a maximal compact subring of \(A_v \) for almost all \(v \); therefore we may, for each finite place \(v \) of \(k \), choose a maximal compact subring \(R_v \) of \(A_v \), in such a way that \(R_v = \alpha_v \) for almost all \(v \); that being done, call \(\Phi_v \) the characteristic function of \(R_v \). For each infinite place \(v \) of \(k \), choose an isomorphism of \(A_v \) with \(M_{m(v)}(D(v)) \), where \(D(v) \) is \(R, H \) or \(C \), as the case may be; identifying \(A_v \) with the latter algebra by means of that isomorphism, define \(\Phi_v \) on \(A_v \) by putting, for all \(x \in A_v \),
\[
\Phi_v(x) = \exp(-\pi \delta \tau(t\tilde{\alpha} \cdot x)),
\]
where notations are the same as in prop. 8 of Chap. X-3. Then \(\Phi = \prod \Phi_v \) is a standard function on \(A^*_A \). Taking now a Haar measure \(\mu \) on \(A^*_A \), we have:

Proposition 1. The integral

\[
Z_A(s) = \int_{A^*_A} \Phi(z) |\psi(z)|_A^s d\mu(z)
\]

is absolutely convergent for \(\text{Re}(s) > n \) and is then given by the formula

\[
Z_A(s) = C \prod_{i=0}^{n-1} Z_k(s-i) \prod_v \left(\prod_{0 < h < n \atop h \neq 0(d(v))} \left(1 - q_v^{h-1} \right) \right) \left(\prod_{0 < h < n \atop h \neq 0(2)} (s-h) \right)^\rho,
\]

where \(Z_k \) is the function defined in theorem 3 of Chap. VII-6, or the zeta-function of \(k \), according as \(k \) is of characteristic 0 or not, where \(\rho \) is the number of real places \(v \) of \(k \) for which \(D(v) = H \), and \(C \) is a constant > 0.

For each \(v \), choose a Haar measure \(\mu_v \) on \(A^*_v \), so that \(\mu_v(R_v) = 1 \) for all finite places \(v \) of \(k \); we may then assume that we have taken \(\mu = \prod \mu_v \), in the same sense as has been explained in Chap. VII-4 for the case \(A = k \). By following step by step the proof of prop. 10, Chap. VII-4, one finds that the integral \(Z_A(s) \) is absolutely convergent, and equal to the infinite product

\[
\prod_v \left(\int_{A_v} \Phi_v(x) |\psi(x)|_v^s d\mu_v(x) \right),
\]

whenever the factors in that product, and the product itself, are absolutely convergent. Those factors have been calculated in propositions 7 and 8 of Chap. X-3; the absolute convergence of \(Z_A(s) \) for \(\text{Re}(s) > n \) is then an immediate consequence of the latter results, combined with prop. 1 of Chap. VII-1. The same results, combined with the definitions in Chap. VII-6, give now the final formula in our proposition for the case \(A = M_n(k) \); combining this with the corollaries of propositions 7 and 8 of Chap. X-3, one obtains at once the general case of the same formula.