Chapter XII

Local classfield theory

§ 1. The formalism of classfield theory. The purpose of classfield theory is to give a description of the abelian extensions of the types of fields studied in this book, viz., local fields and A-fields. Here we assemble part of the formal machinery common to both types.

Lemma 1. Let \(G = G_1 \times N \) be a quasicompact group, \(G_1 \) being compact and \(N \) isomorphic to \(\mathbb{R} \) or \(\mathbb{Z} \); let \(H \) be an open subgroup of \(G \). Then, if \(H \) is contained in \(G_1 \) (i.e. if it is compact), \(N \) is isomorphic to \(\mathbb{Z} \), and \(H \) is of finite index in \(G_1 \); otherwise it is of finite index in \(G \).

Put \(H_1 = H \cap G_1 \); as this is open in \(G_1 \), and \(G_1 \) is compact, it is of finite index in \(G_1 \); this proves the first assertion. As \(H \cap N \) is an open subgroup of \(N \), it is \(N \) if \(N \) is isomorphic to \(\mathbb{R} \); therefore \(H = H_1 \times N \) in that case, and \(G/H \) is isomorphic to \(G_1/H_1 \). If \(N \) is isomorphic to \(\mathbb{Z} \), let \(n_1 \) be a generator of \(N \); if \(H \) is not contained in \(G_1 \), it has an element of the form \(g_1 n_1^v \) with \(g_1 \in G_1, \mu \in \mathbb{Z}, \mu \neq 0 \). As \(G_1/H_1 \) is finite, there is \(v \neq 0 \) such that \(g_1^v \in H_1 \). Then \(n_1^v \) is in \(H \), so that \(H \) contains the group \(H' \) generated by \(H_1 \) and \(n_1^v \). As \(H' \) is obviously of finite index in \(G \), this proves the lemma. Theorem 1 of Chap. IV-4 may be regarded as the special case where \(G = k_x^\times/k_x, H \) being the image of \(\Omega(P) \) in \(k_x^\times/k_x^\times \).

Lemma 2. Let \(G = G_1 \times N \), \(G' = G'_1 \times N' \) be quasicompact groups, \(G_1 \) and \(G'_1 \) being compact and \(N, N' \) isomorphic to \(\mathbb{R} \) or \(\mathbb{Z} \). Let \(F \) be a morphism of \(G' \) into \(G \) but not into \(G_1 \). Then \(F^{-1}(G_1) = G'_1 \); the kernel of \(F \) is compact; \(F(G') \) is closed in \(G \), and \(G/F(G') \) is compact.

As \(G_1 \) is the maximal compact subgroup of \(G \), \(F(G_1') \) is contained in \(G_1 \). For \(n' \in N' \), call \(f(n') \) the projection of \(F(n') \) onto \(N \) in \(G \); \(f \) is then a non-trivial morphism of \(N' \) into \(N \), hence, obviously, an isomorphism of \(N' \) onto a closed subgroup of \(N \) with compact quotient; our first and second assertions follow from this at once. We also see now that \(F \) induces on \(N' \) an isomorphism of \(N' \) onto \(F(N') \), and that \(F(N') \cap G_1 = \{1\} \); therefore \(F(G') \) is the direct product of \(F(G'_1) \) and \(F(N') \) and is closed. Finally, \(G/G_1, F(N') \) is clearly isomorphic to \(N/f(N') \), hence compact; as the kernel of the obvious morphism of \(G/F(G') \) onto \(G_1 F(N') \) is the image of \(G_1 \) in \(G/F(G') \), hence compact, \(G/F(G') \) must also be compact.
From now on, in this §, we will consider a field \(K \); later on, this will be either a local field or an \(\mathbf{A} \)-field. As in Chapter IX, we write \(\bar{K} \) for an algebraic closure of \(K \), \(K_{\text{sep}} \) for the union of all separable extensions of \(K \) contained in \(\bar{K} \), and \(\mathfrak{G} \) for the Galois group of \(K_{\text{sep}} \) over \(K \), topologized as usual. We will write \(K_{\text{ab}} \) for the maximal abelian extension of \(K \) contained in \(\bar{K} \); this is the same as the union of all abelian extensions of \(K \) of finite degree, contained in \(\bar{K} \), i.e. of all the Galois extensions of \(K \) of finite degree, contained in \(\bar{K} \), whose Galois group is commutative; by definition, this is contained in \(K_{\text{sep}} \). We denote by \(\mathfrak{G}^{(1)} \) the subgroup of \(\mathfrak{G} \) corresponding to \(K_{\text{ab}} \); this is the smallest closed normal subgroup of \(\mathfrak{G} \) such that \(\mathfrak{G}/\mathfrak{G}^{(1)} \) is commutative; it is therefore the same as the "topological commutator-group" of \(\mathfrak{G} \), i.e. the closure of the subgroup of \(\mathfrak{G} \) generated by the commutators of elements of \(\mathfrak{G} \). We write \(\mathfrak{A} \) for the Galois group of \(K_{\text{ab}} \) over \(K \); this may be identified with \(\mathfrak{G}/\mathfrak{G}^{(1)} \); it is a compact commutative group. Let \(\chi \) be any character of \(\mathfrak{G} \); as in Chap. IX-4, call \(\mathfrak{S} \) its kernel and \(L \) the subfield of \(K_{\text{sep}} \) corresponding to \(\mathfrak{S} \), which is the cyclic extension of \(K \) attached to \(\chi \); clearly \(L \subseteq K_{\text{ab}} \) and \(\mathfrak{S} \supseteq \mathfrak{G}^{(1)} \), so that we may identify \(\chi \) with a character of \(\mathfrak{A} \), for which we will also write \(\chi \). Conversely, every character of \(\mathfrak{A} \) determines in an obvious manner a character of \(\mathfrak{G} \), with which we identify it. Thus the group of characters of \(\mathfrak{G} \), for which we will write \(X_{\mathfrak{G}} \), is identified with the group of characters of \(\mathfrak{A} \); the latter is the same as the dual \(\mathfrak{A}^* \) of \(\mathfrak{A} \), except that we will always write the group \(X_{\mathfrak{A}} \) multiplicatively; we put on \(X_{\mathfrak{A}} \) the discrete topology, this being in agreement with the fact that the dual of a compact commutative group is always discrete. By the duality theory, the intersection of the kernels of all the characters of \(\mathfrak{A} \) is the neutral element; this is the same as to say that the intersection of the kernels \(\mathfrak{S} \) of all the characters \(\chi \) of \(\mathfrak{G} \) is \(\mathfrak{G}^{(1)} \), or also that \(K_{\text{ab}} \) is generated by all the cyclic extensions \(L \) of \(K \); this is of course well-known.

Let \(K' \) be any field containing \(K \); as in Chap. IX-3, we take an algebraic closure \(\bar{K}' \) of \(K' \) and assume at the same time that we have taken for \(\bar{K} \) the algebraic closure of \(K \) in \(\bar{K}' \); then, as we have seen there, \(K_{\text{sep}} \) is contained in \(K'_{\text{sep}} \), and, if \(\mathfrak{G}' \) is the Galois group of \(K'_{\text{sep}} \) over \(K' \), the restriction morphism \(\rho \) of \(\mathfrak{G}' \) into \(\mathfrak{G} \) is the one which maps every automorphism of \(K_{\text{sep}} \) over \(K' \) onto its restriction to \(K_{\text{sep}} \). Obviously \(\rho \) maps \(\mathfrak{G}'^{(1)} \) into \(\mathfrak{G}^{(1)} \), so that it determines a morphism of \(\mathfrak{A}' = \mathfrak{G}'/\mathfrak{G}'^{(1)} \) into \(\mathfrak{A} = \mathfrak{G}/\mathfrak{G}^{(1)} \), which we also denote by \(\rho \) and call the restriction morphism of \(\mathfrak{A}' \) into \(\mathfrak{A} \). It amounts to the same to say that \(K_{\text{ab}} \) is contained in \(K'_{\text{ab}} \), and that \(\rho \) maps an element \(\chi' \) of \(\mathfrak{A}' \), i.e. an automorphism of \(K'_{\text{ab}} \) over \(K' \), onto its restriction to \(K_{\text{ab}} \). Correspondingly, \(\chi \mapsto \chi' \circ \rho \) is a morphism of \(X_{\mathfrak{A}} \) into \(X_{\mathfrak{A}'} \).

In classfield theory, one defines a "pairing" of the group \(X_{\mathfrak{A}} \) of the characters of \(\mathfrak{G} \) (or, what amounts to the same, of \(\mathfrak{A} \)) with a locally