Chapter II

Lattices and duality over local fields

§ 1. Norms. In this § and the next one, K will be a p-field, commutative or not. We shall mostly discuss only left vector-spaces over K; everything will apply in an obvious way to right vector-spaces. Only vector-spaces of finite dimension will occur; it is understood that these are always provided with their “natural topology” according to corollary 1 of th. 3, Chap. I-2. By th. 3 of Chap. I-2, every subspace of such a space V is closed in V. Taking coordinates, one sees that all linear mappings of such spaces into one another are continuous; in particular, linear forms are continuous. Similarly, every injective linear mapping of such a space V into another is an isomorphism of V onto its image. As K is not compact, no subspace of V can be compact, except $\{0\}$.

DEFINITION 1. Let V be a left vector-space over the p-field K. By a K-norm on V, we understand a function N on V, with values in \mathbb{R}^+, such that:

(i) $N(v)=0$ if and only if $v=0$;
(ii) $N(xv)=\text{mod}_K(x)N(v)$ for all $x \in K$ and all $v \in V$;
(iii) N satisfies the ultrametric inequality

$$N(v+w) \leq \sup(N(v),N(w))$$

for all v, w in V.

On K^n, one defines a K-norm N_0 by putting $N_0(x) = \sup_{1 \leq i \leq n} (\text{mod}_K(x_i))$ for all $x = (x_1, \ldots, x_n)$ in K^n. As every vector-space of finite dimension over K is isomorphic to a space K^n, this shows that there are K-norms on all such spaces.

One can obviously use any K-norm on V in order to topologize V, by taking $N(v-w)$ as distance-function.

PROPOSITION 1. Let V be a left vector-space of finite dimension over the p-field K. Then every K-norm on V defines the natural topology on V. In particular, every such norm N is continuous, and the subsets L_r of V defined by $N(v) \leq r$ are compact neighborhoods of 0 for all $r > 0$.

As to the first assertion, in view of corollary 1 of th. 3, Chap. I-2, we need only show that the topology defined by N on V makes V into a topological vector-space over K. This follows at once from the inequality

$$N(x'v'-xv) \leq \sup(\text{mod}_K(x')N(v'-v), \text{mod}_K(x'-x)N(v))$$

which is an immediate consequence of def. 1. Therefore N is continuous, and the sets L_r make up a fundamental system of closed neighborhoods.
of 0; in particular, \(L_r \) must be compact for some \(r > 0 \). Now, for any \(s > 0 \), take \(a \in K^\times \) such that \(\text{mod}_K(a) \leq r/s \); then, as one sees at once, \(L_s \) is contained in \(a^{-1} L_r \); therefore it is compact.

Corollary 1. There is a compact subset \(A \) of \(V - \{0\} \) which contains some scalar multiple of every \(v \) in \(V - \{0\} \).

Call \(q \) the module of \(K \), and take a \(K \)-norm \(N \) in \(V \). If \(\pi \) is a prime element of \(K \), we have \(\text{mod}_K(\pi) = q^{-1} \), by th. 6 of Chap. I-4, hence \(N(\pi^n v) = q^{-n} N(v) \) for all \(n \in \mathbb{Z} \) and all \(v \in V \). Let \(A \) be the subset of \(V \) defined by \(q^{-1} \leq N(v) \leq 1 \); by proposition 1, it is compact; and, for every \(v \neq 0 \), one can choose \(n \in \mathbb{Z} \) so that \(\pi^n v \in A \).

Corollary 1 implies the fact that the “projective space” attached to \(V \) is compact.

Corollary 2. Let \(\varphi \) be any continuous function on \(V - \{0\} \), with values in \(\mathbb{R} \), such that \(\varphi(av) = \varphi(v) \) for all \(a \in K^\times \) and all \(v \in V - \{0\} \). Then \(\varphi \) reaches its maximum at some point \(v_1 \) of \(V - \{0\} \).

In fact, this will be so if we take \(A \) as in corollary 1 and take for \(v_1 \) the point of \(A \) where \(\varphi \) reaches its maximum on \(A \).

Corollary 3. Let \(f \) be any linear form on \(V \), and \(N \) a \(K \)-norm on \(V \). Then there is \(v_1 \neq 0 \) in \(V \), such that

\[
N(v)^{-1} \text{mod}_K(f(v)) \leq N(v_1)^{-1} \text{mod}_K(f(v_1))
\]

for all \(v \neq 0 \) in \(V \).

This is a special case of corollary 2, that corollary being applied to the left-hand side of (2). If one denotes by \(N^*(f) \) the right-hand side of (2), then \(N^*(f) \) is the smallest positive number such that

\[
\text{mod}_K(f(v)) \leq N^*(f) \cdot N(v)
\]

for all \(v \in V \), and \(f \to N^*(f) \) is a \(K \)-norm on the dual space of \(V \), i.e. on the right vector-space made up of the linear forms on \(V \) (where the addition is the obvious one, and the scalar multiplication is defined by putting \((fa)(v) = f(v)a \) when \(f \) is such a form, and \(a \in K \)).

By a hyperplane in \(V \), one understands a subspace of \(V \) of codimension 1, i.e. any subset \(H \) of \(V \) defined by an equation \(f(v) = 0 \), where \(f \) is a linear form other than 0; when \(H \) is given, \(f \) is uniquely determined up to a scalar factor other than 0. Now, if (2) is valid for all \(v \neq 0 \), and for a given norm \(N \), a given linear form \(f \neq 0 \) and a given \(v_1 \neq 0 \), it remains so if one replaces \(f \) by \(fa \), with \(a \in K^\times \), and \(v_1 \) by \(bv_1 \) with \(b \in K^\times \); in other words, its validity for all \(v \neq 0 \) depends only upon the hyperplane \(H \) defined by \(f = 0 \) and the subspace \(W \) of \(V \) generated by \(v_1 \); when it holds for all \(v \neq 0 \), we shall say that \(H \) and \(W \) are \(N \)-orthogonal to each other.