Chapter VIII

Traces and norms

§ 1. Traces and norms in local fields. In §§ 1–3, we will consider exclusively local fields (assumed to be commutative). We denote by K a local field and by K' an algebraic extension of K of finite degree n over K. If K is an R-field and $K' \neq K$, we must have $K = R$, $K' = C$, $n = 2$; then, by corollary 3 of prop. 4, Chap. III-3, $Tr_{C/R}(x) = x + \bar{x}$ and $N_{C/R}(x) = x\bar{x}$; $Tr_{C/R}$ maps C onto R, and $N_{C/R}$ maps C^* onto R_\times^*, which is a subgroup of R^\times of index 2.

From now on, until the end of § 3, we assume K to be a p-field and adopt our usual notations for such fields, denoting by q the module of K, by R its maximal compact subring, by P the maximal ideal in R, and by π a prime element of K. The field K' being as stated above, we adopt similar notations, viz., q', R', P', π', for K'. We write f for the modular degree of K' over K and e for the order of ramification of K' over K, as defined in def. 4 of Chap. I-4; then $q' = q^f$ and $n = ef$, by corollary 6 of th. 6, Chap. I-4. As $e = \text{ord}_K(\pi)$, the R'-module generated in K' by $P' = \pi' R$, for any $v \in \mathbb{Z}$, is P'^v; for this, we will write $i(P^v)$.

By corollary 1 of prop. 4, Chap. III-3, and the remarks following that proposition, $Tr_{K'/K}$ is ± 0 if and only if K' is separable over K; then, being K-linear, it maps K' onto K. By the definition of the norm, and by corollary 3 of th. 3, Chap. I-2, we have, for all $x' \in K'$:

\[\text{mod}_K(x') = \text{mod}_K(N_{K'/K}(x')). \]

In view of th. 6 of Chap. I-4, this implies that $x' \in R'$ if and only if $N_{K'/K}(x') \in R$, and $x' \in R^\times$ if and only if $N_{K'/K}(x') \in R^\times$. As $\text{mod}_K(\pi) = q^{-1}$ and $\text{mod}_K(\pi') = q^{-f}$, (1) may also be written as follows, for $x' \neq 0$:

\[\text{ord}_K(N_{K'/K}(x')) = f \cdot \text{ord}_K(x'). \]

From now on, we will write Tr, N instead of $Tr_{K'/K}$, $N_{K'/K}$, except when there are more fields to be considered than K and K'. For every $v \in \mathbb{Z}$, we will write $\mathfrak{N}(P'^v) = P'^v$; by (2), this is the R-module generated in K by the image of P'^v under N.

Proposition 1. Let K' be separable over K. Then, if $x' \in R'$, $Tr(x') \in R$; if $x' \in P'$, $Tr(x') \in P$ and $N(1 + x') = 1 + Tr(x') + y$ with $y \in R \cap x'^2 R'$.
Let \bar{K} be an algebraic closure of K'; call $\lambda_1, \ldots, \lambda_n$ the distinct K-linear isomorphisms of K' into \bar{K}; then, by corollary 3 of prop. 4, Chap. III-3, we have

$$\text{Tr}(x') = \sum_i \lambda_i(x'), \quad N(1 + x') = \prod_i (1 + \lambda_i(x')).$$

Call K'' the compositum of the fields $\lambda_i(K')$, which is the smallest Galois extension of K in \bar{K}, containing K'; define R'', P'' for K'' as R, P are defined for K. By corollary 5 of th. 6, Chap. I-4, we have $\lambda_i(R') \subset R''$ and $\lambda_i(P') \subset P''$ for all i, so that $\text{Tr}(x')$ is in R'' if $x' \in R'$, and in P'' if $x' \in P'$; as the same corollary shows that $R = K \cap R''$ and $P = K \cap P''$, this proves our assertions concerning Tr. Now assume $x' \in R'$, $x' \neq 0$, and put

$$y = N(1 + x') - 1 - \text{Tr}(x');$$

by (3), this is a sum of monomials of degree ≥ 2 in the $\lambda_i(x')$. As one of the λ_i is the identity, and as the λ_i, by corollary 2 of prop. 3, Chap. III-2, differ from one another only by automorphisms of K'' over K, all the $\lambda_i(x')$ have the same order as x' in K'', so that yx'^{-2} is in R'' if x' is in R'. As $R' = K' \cap R''$, this proves our last assertion. In view of the fact that $\text{Tr} = 0$ if K' is inseparable over K, and of the remarks about that case in Chap. III-3, our proposition is still valid (but uninteresting) in the inseparable case.

COROLLARY. If $x' \in P'^{-e+1}$, $\text{Tr}(x') \in R$.

By definition, $e = \text{ord}_K(\pi)$; therefore our assumption amounts to $\pi x' \in P'$, which implies $\text{Tr}(\pi x') \in P$ by prop. 1, hence $\text{Tr}(x') \in R$ since Tr is K-linear.

DEFINITION 1. Let K' be separable over K; let d be the largest integer such that $\text{Tr}(x') \in R$ for all $x' \in P'^{-d}$. Then P^d is called the different of K' over K, and d its differential exponent.

For the different, we will write $D(K'/K)$, or simply D. If K' is inseparable over K, Tr is 0, so that it maps $P'^{-\infty}$ into R for all v; in that case we put $d = + \infty$, $D(K'/K) = 0$.

By the corollary of prop. 1, we have $d \geq e-1$. In particular, if $d = 0$, $e = 1$, so that K' is unramified over K. The converse is also true; this will be a consequence of the following results:

PROPOSITION 2. Let K' be unramified over K; call ρ, ρ' the canonical homomorphisms of R onto $k = R/P$, and of R' onto $k' = R'/P'$, respectively. Then, for $x' \in R'$, we have

$$\rho(\text{Tr}(x')) = \text{Tr}_{k'/k}(\rho'(x')), \quad \rho(N(x')) = N_{k'/k}(\rho'(x')).$$