
The rapid development of modern technologies and the functional excellence of new equipment have offered much scope for the production of a whole battery of principally novel or modified assays for histamine determination in tissues, cells and body fluids (LORENZ et al. 1987a). About 10 years ago there were only three satisfactory methods for measurement of plasma histamine (BEAVEN 1976; LORENZ und DOENICKE 1978): the most sophisticated bio-assays on the superfused ileum strip (ADAM et al. 1957), the fluorometric-fluoroenzymatic assay (Combined method) (LORENZ et al. 1970) and the radioenzymatic double-isotope assay (BEAVEN et al. 1972). Now we have reliable data from a whole series of assays (this chapter), but there are many more methods for histamine determination the reliability of which has never been sufficiently tested under specific laboratory or field conditions. However, these techniques have been reported in more or less distinguished journals and their authors and sometimes companies compete for consumers in the scientific community like sellers of drugs, using terms in advertisements such as “elegant”, “exact”, “modern”, “high-tech”, “convenient” and “simple”. Even terms like “highly sensitive” and “highly specific” are often used in the descriptions but not substantiated by convincing findings.

In addition, in a world of environmental destruction and limited resources, safety and cost-effectiveness considerations are becoming increasingly important in basic research and hence are becoming potent criteria for adopting or rejecting either a new or an older methodology.

This current complex situation for any kind of decision-making (preference, selection) is not unique for methods of histamine analysis, but common for all types of classification procedure (diagnostic tests, etc.) (LORENZ and ROTHMUND 1989), which in turn are considered as part of technology (MOSTELLER 1985; JENNETT 1986). For a single user, and especially for a

*This study was supported by a grant from Zyma GmbH, Munich.
newcomer to the field, it is becoming more and more difficult to make a
decision with the highest utility value at a given time since the user does not
know exactly where he or she is situated in the life cycle of a new technology:
at the starting point with promising reports (usually a small number and no
failures), increasing professional adoption, culminating in public acceptance,
starting to decline in use by becoming the standard procedure for comparison
with new technologies, professional denunciation as the next step and finally
discreditation, which depends more often on being replaced by the next
innovation than on showing that the present one is not worth its cost (Jennett

To overcome these problems in technology assessment a new strategy
was created first in the United States (NIH) (Mullan and Jacoby 1985),
then in the European countries (Stocking 1985, Vang 1986), which was
called the Consensus Development Conference (CDC). It is a formalized
way of seeking advice (Mcpeek 1989), which is a combination a judicial

---

**Fig. 1.** Flow diagram and structure of a Consensus Development Conference as a
model for decision-making in technology assessment. (Vang 1986)