A SOLUTION FOR THE VARIANCE-PENALIZED MARKOV DECISION PROBLEM BASED ON PARAMETRIC LINEAR PROGRAMMING

Lodewijk C.M. Kallenberg, Leiden

Abstract: Considered is the Markov decision process with finite state and action spaces and with average expected reward, appropriately modified to include a penalty for the variability in the stream of rewards. It is shown that a pure and stationary policy maximizes this criterion. A parametric linear program is formulated, from which the optimal policy can be obtained.

1. Introduction

In /1/ the variance-penalized Markov decision problem has been introduced. For more background and relations with other work we refer to the introduction of /1/. In this paper we present a solution procedure for the variance-penalized Markov decision problem based on parametric linear programming. This approach is also related to the papers /2/ and /3/. In /4/ we will extend these results to a unifying framework for Markov decision problems with mean-variance trade-offs.

A discrete Markov decision process with finite state and action spaces is observed at discrete time points \(t = 1, 2, \ldots \). The state space is denoted by \(E = \{1, 2, \ldots, N\} \), and \(A(i) \) is the action space in state \(i \), \(i \in E \).

At any time point \(t \) the system is in one of the states and an action has to be chosen by the decision maker. If the system is in state \(i \) and action \(a \) is chosen, then an immediate reward \(r_{ia} \) is earned and the process moves to a state \(j \in E \) with transition probability \(p_{iaj} \), where \(p_{iaj} \geq 0 \) and \(\Sigma_j p_{iaj} = 1 \).

A policy \(R \) is a sequence of decision rules, one rule for each time point. If the rules are identical and nonrandomized the policy is called pure and deterministic. Such a policy is denoted by a vector \(f \), where \(f(i) \) is the action chosen in state \(i \).

Let \(X_t \) be the state at time \(t \) and \(Y_t \) be the action at time \(t \). Denote by \(P_R(X_t = j, Y_t = a | X_1 = i) \) the conditional probability that at time \(t \) the state is \(j \) and the action taken is \(a \), given that the initial state is \(i \) and the decision maker uses policy \(R \).
Let \(\beta = (\beta_1, \beta_2, \ldots, \beta_N) \) be a given initial distribution, i.e. \(\beta_i \) is the probability that \(X_1 = i \), where \(\beta_i \geq 0 \) for all \(i \in E \) and \(\Sigma_i \beta_i = 1 \).

For any policy \(R \) and initial distribution \(\beta \), we define the average expected reward over the infinite horizon, shortly the \(\beta \)-average reward for policy \(R \), by

\[
\phi(\beta, R) := \liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \beta_i \cdot E_R(r_{X_t} \gamma_t | X_1 = i)
\]

From (1) it follows that

\[
\phi(\beta, R) = \liminf_{T \to \infty} \sum_{j,a} x_{ja}^T(R) r_{ja},
\]

where \(x_{ja}^T(R) = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \beta_i \cdot P(R(X_t = j, Y_t = a | X_1 = i), a \in A(j), j \in E, t \in N \).

We shall say that \(R^* \) is a \(\beta \)-average optimal policy if \(\phi(\beta, R^*) \geq \phi(\beta, R) \) for every policy \(R \). It is well-known that a \(\beta \)-average optimal pure and deterministic policy exists /5/.

Let \(X(R) \) denote the set of vector-limit points of the sequence \((x^T(R), t \in N) \). Define \(C := \{ R | X(R) \text{ is a singleton} \} \). It is known /6/ that \(C \) contains the stationary policies. If we denote by \(x(R) \) the unique element of \(X(R) \) for any \(R \in C \), then from (2) it follows

\[
\phi(\beta, R) = \sum_{j,a} x_{ja}(R) r_{ja}
\]

The long-run variance of a policy \(R \) will be defined by

\[
V(\beta, R) := \liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \beta_i \cdot E_R([r_{X_t} \gamma_t - \phi(\beta, R)]^2 | X_1 = i)
\]

For \(R \in C \), we obtain

\[
V(\beta, R) = \sum_{j,a} x_{ja}(R)r_{ja}^2 - [\sum_{j,a} x_{ja}(R)r_{ja}]^2
\]

The variance-penalized Markov decision problem is the problem of maximizing

\[
\psi_*(\beta, R) := \phi(\beta, R) - \lambda \cdot V(\beta, R),
\]

where \(\lambda \geq 0 \) is the penalty for the variance and the maximization is taken over the policies of \(C \). Hence, for \(R \in C \), we have

\[
\psi_*(\beta, R) = \sum_{j,a} x_{ja}(R)[r_{ja}^2 - \lambda r_{ja}^2] + \lambda \cdot [\sum_{j,a} x_{ja}(R)r_{ja}]^2
\]

A policy \(R^* \in C \) is called variance-penalized optimal if \(\psi_*(\beta, R^*) \geq \psi_*(\beta, R) \) for all \(R \in C \).

Assumption: \(r_{ia} \geq 0 \) for all \(a \in A(i) \) and \(i \in E \).

This assumption is without loss of generality; if the rewards \(r_{ia} \) are replaced by \(r_{ia} - c \), where \(c := \min_{j,b} r_{jb} \), then the rewards are nonnegative, \(V(\beta, R) \) is unchanged and \(\phi(\beta, R) \) is replaced by \(\phi(\beta, R) - c \).