Walter Noll published two works related to the theory of annihilators of linear differential operators. The first publication, entitled “Quasi-Invertibility in a Staircase Diagram”, was finished in January 1969. It contained a theorem, “which was needed in an investigation of annihilators of differential operators, but could have other applications” [7.1]. The second paper was devoted to a general theory of annihilators of linear differential operators. Noll originally planned to publish it in the Proceedings of the American Mathematical Society, but then, for unknown reasons, submitted it at the end of July 1969 to the Journal D’Analyse Mathématique, issued in Jerusalem, Israel [7.2]. The theory of annihilators did not belong to Noll alone. It was created by him in collaboration with a young talented German mathematician Heinz Dieter Dombrowski. Moreover, the idea of the work originated from the habilitation script of Dombrowski’s, “Eine Charakterisierung der Differential Operatoren”, published in 1966 [7.3].

H.D. Dombrowski was born on November 3, 1936, in Kallenau, Germany. He received a professional education as a mathematician and defended a Ph.D. thesis on the topic “Fastautomorphe Funktionen zweiten Grades” in 1962 at the famous University of Göttingen [7.4]. Between 1963 and 1966, Dombrowski worked intensively on the mathematical foundations of physics. In collaboration with Klaus Horneffer, he published a paper in 1964 on the axiomatization of the concept of a physical system and another on differential geometry, related to the Galilean Principle of Relativity [7.5]. Dombrowski and Horneffer devoted also a paper to a generalization of the Galilean Principle of Relativity through the introduction of an arbitrary coordinate system into the space-time continuum [7.6].
Noll met Dombrowski at the Workshop on the Foundations of Physics held in Oberwolfach, West Germany, in June–July 1966. Noll liked Dombrowski’s report and he got to know Dombrowski personally. After a conversation, Dombrowski considered him as a “very interested and susceptible partner to speak to”. Their scientific interests seemed to coincide, especially in axiomatical physics and space-time theories. Dombrowski remembered: “Apparently, he (Walter Noll) liked my way of dealing with fundamental physical problems. It had some similarity with his own approach, although we used completely different ... mathematical methods. But exactly this different initial position seemed to appeal to Noll” [7.7]. Without hesitation, Noll invited Dombrowski to come for a one-year-stay to the Department of Mathematics of the Carnegie-Mellon University. With Noll’s assistance, Dombrowski applied and succeeded in getting a Senior Foreign Scientist Fellowship from the National Science Foundation of the USA [7.8]. Dombrowski arrived in Pittsburgh in October 1967. He remembered: “The year from October 1967 to September 1968 in Walter Noll’s team at the Carnegie-Mellon University was for me a wonderful, stimulating, and enjoyable time” [7.9].

Noll thought he had found a partner, with whom he could work on the mathematical foundations of physics. However, it turned out very soon that their views of this subject were different, and Noll didn’t intend to change his views. Another difficulty was of technical character: their contact time at the Carnegie-Mellon University was only several hours a week; too short for a real collaboration [7.10]. At the same time, Dombrowski could enjoy the hospitality of Noll and his colleagues at the Department of Mathematics in full. He took part in all the parties, cocktails, receptions and dinners which were typical of the social life of the teaching staff at the Carnegie-Mellon University. However, the approaching end of his stay in September 1968 troubled Dombrowski, who had to give an account of its practical results to the National Science Foundation. He decided to produce a joint publication with Noll in pure mathematics, in which they both seemed to have common interests. Dombrowski offered Noll an algebraic topic on annihilators of linear differential