Regional Cerebral Blood Flow in Cases of Brain Tumor

M. Brock, A. A. Hadjidimos, K. Schürmann, M. Ellger, and F. Fischer

Neurosurgical Department, University of Mainz

The present series consists of 21 patients with brain tumors: 12 malignant gliomas, 4 oligodendro glialomas, 3 meningeomas and 2 metastases, studied by the 133Xe-gamma-clearance rCBF method. In 16 patients at least 3 determinations of rCBF were performed: a) in the resting state, R; b) during hyperventilation, HV, and c) during hypertension, HT. Of the remaining 5 patients, 1 was studied only during R, while the other 4 were submitted either to HV or to HT additionally to the R study. The average age of this series of patients was 47 years, the youngest being 19 and the oldest 64. rCBF studies had to be performed under general anesthesia ($N_2O + O_2$, Engström respirator) in 5 instances in which the patients were uncooperative. MABP was continuously recorded through the internal carotid catheter. End-expiratory CO_2 was also monitored (and recorded) by means of an infrared analyser in selected cases. Arterial (and in some cases also cerebral venous) pH, pCO_2 and pO_2 were determined at least once for each Xenon injection.

Results

Average rCBF and focal changes: Average hemisphere blood flow in the whole series was 31.5 ml/100 g/min. All patients except 1 (without focal changes) had average rCBF values below 42 ml/100 g/min, the lowest value being 14.5 ml/100 g/min.

In 19 cases focal rCBF disturbances could be detected in agreement with the tumor location as verified directly or by other diagnostic procedures. In 13 cases a relative hyperemia was detected at the areas corresponding to the tumor site. In 6 cases there were ischemic rCBF focal changes corresponding to the tumor location.

Cases with ischemic focus: As stated, in 6 cases rCBF values at the tumor site were lower than at the surrounding areas. In 3 of these cases there was a perifocal hyperemia, i.e., the tumor site was surrounded by areas with higher rCBF than the rest of the hemisphere.

Reactivity to HV varied very much in these 6 cases, ranging from an excessive rCBF reduction at the tumor site (case 39/68) or over its periphery (case 45/68) to a “paradoxical” focal CBF increase (case 22/69). In all 6 cases but 1 (22/69) HV caused a reduction of inter-regional rCBF differences (inter-channel SD) with homogeneisation of mean hemispherical CBF at a lower level than during rest (this phenomenon will be discussed further on).

A more or less pronounced impairment of autoregulation (AR) was present in all 6 cases – either at the tumor site or at its near or remote periphery – the number of cases being still too small to allow systematization.

Cases with hyperemic focus: In 13 cases there was a hyperemic focus over the tumor location.
In contrast to the ischemic group, there was a clear increase in interregional CBF differences (inter-channel SD) in most cases (6 out of 10) with a hyperemic focus corresponding to the tumor location. The mechanism governing both types of changes seems

EFFECTS OF HYPERVENTILATION

![Diagram showing rCBF changes caused by hyperventilation in cases of brain tumor. The non-tumor areas react more to HV than the tumor areas. The consequence of this is a decrease of interregional CBF differences in cases with hypoxic focus](image)

Fig. 1. rCBF changes caused by hyperventilation in cases of brain tumor. The non-tumor areas react more to HV than the tumor areas. The consequence of this is a decrease of interregional CBF differences in cases with hypoxic focus.

Fig. 2. Measurement of multichannel rCBF during the operation of brain tumors