Symmetric Decomposition of a Positive Definite Matrix*

by R. S. Martin, G. Peters, and J. H. Wilkinson

1. Theoretical Background

The methods are based on the following theorem due to Cholesky [I].

If \(A \) is a symmetric positive definite matrix then there exists a real non-singular lower-triangular matrix \(L \) such that

\[
LL^T = A.
\] (1)

Further if the diagonal elements of \(L \) are taken to be positive the decomposition is unique.

The elements of \(L \) may be determined row by row or column by column by equating corresponding elements in (1). In the row by row determination we have for the \(i \)-th row

\[
\sum_{k=1}^{i} l_{ik} l_{kj} = a_{ij} \quad \text{giving} \quad l_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{kj} \right) / l_{jj} \quad (j = 1, \ldots, i - 1),
\] (2)

\[
\sum_{k=1}^{i} l_{ik} l_{ki} = a_{ii} \quad \text{giving} \quad l_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} l_{ik} l_{ki} \right)^{1/2}.
\] (3)

There are thus \(n \) square roots and approximately \(\frac{1}{6} n^3 \) multiplications.

An alternative decomposition may be used in which the square roots are avoided as follows. If we define \(\tilde{L} \) by the relation

\[
L = \tilde{L} \text{ diag}(l_{ii}),
\] (4)

where \(L \) is the matrix given by the Cholesky factorization, then \(\tilde{L} \) exists (since the \(l_{ii} \) are positive) and is a unit lower-triangular matrix. We have then

\[
A = L L^T = \tilde{L} \text{ diag}(l_{ii}) \text{ diag}(l_{ii}) \tilde{L}^T = \tilde{L} D \tilde{L}^T,
\] (5)

where \(D \) is a positive diagonal matrix.

This factorization can be performed in \(n \) major steps in the \(i \)-th of which the \(i \)-th row of \(\tilde{L} \) and \(\tilde{d}_i \) are determined. The corresponding equations are

\[
\sum_{k=1}^{i} \tilde{l}_{ik} \tilde{d}_k \tilde{l}_{jk} = a_{ij} \quad \text{giving} \quad \tilde{l}_{ij} \tilde{d}_j = a_{ij} - \sum_{k=1}^{i-1} \tilde{l}_{ik} \tilde{d}_k \tilde{l}_{jk} \quad (j = 1, \ldots, i - 1),
\] (6)

\[
\sum_{k=1}^{i} \tilde{l}_{ik} \tilde{d}_k \tilde{l}_{ki} = a_{ii} \quad \text{giving} \quad \tilde{d}_i = a_{ii} - \sum_{k=1}^{i-1} \tilde{l}_{ik} \tilde{d}_k \tilde{l}_{ki}
\] (7)

since $\tilde{I}_{ij} = 1$. Expressed in this form the decomposition appears to take twice as many multiplications as that of CHOLESKY, but if we introduce the auxiliary quantities \tilde{a}_{ij} defined by

$$\tilde{a}_{ij} = \tilde{I}_{ij} d_j$$

(8)
equations (6) and (7) become

$$\tilde{a}_{ij} = a_{ij} - \sum_{k=1}^{i-1} \tilde{a}_{ik} \tilde{I}_{jk} \quad (j = 1, \ldots, i - 1),$$

(9)

$$d_i = a_{ii} - \sum_{k=1}^{i-1} \tilde{a}_{ik} \tilde{I}_{ik}.$$

(10)

We can therefore determine the \tilde{a}_{ij} successively and then use them to determine the \tilde{I}_{ij} and d_i. Notice that the \tilde{a}_{ij} corresponding to the i-th row are not required when dealing with subsequent rows. The number of multiplications is still approximately $\frac{1}{6} n^3$ and there are no square roots.

Either factorization of A enables us to calculate its determinant since we have

$$\text{det} (A) = \text{det} (L) \text{det} (L^T) = \prod_{i=1}^{n} l_{ii}^2$$

(11)

and

$$\text{det} (A) = \text{det} (\tilde{L}) \text{det} (\tilde{D}) \text{det} (\tilde{L}^T) = \prod_{i=1}^{n} d_i.$$

(12)

We can also compute the solution of the set of equations

$$Ax = b$$

corresponding to any given right-hand side. In fact if

$$Ly = b \quad \text{and} \quad L^T x = y$$

(14)

we have

$$Ax = LL^T x = Ly = b.$$

(15)

Equations (15) may be solved in the steps

$$y_i = \left(b_i - \sum_{k=1}^{i-1} l_{ik} y_k \right) / l_{ii} \quad (i = 1, \ldots, n),$$

(16)

$$x_i = \left(y_i - \sum_{k=i+1}^{n} l_{ki} x_k \right) / l_{ii} \quad (i = n, \ldots, 1)$$

(17)

involving n^2 multiplications in all and $2n$ divisions. Similarly if

$$\tilde{L} y = b, \quad \tilde{L}^T x = D^{-1} y,$$

(18)

we have

$$Ax = \tilde{L} \tilde{D} \tilde{L}^T x = \tilde{L} DD^{-1} y = b.$$

(19)

Equations (18) may be solved in the steps

$$y_i = b_i - \sum_{k=1}^{i-1} \tilde{I}_{ik} y_k \quad (i = 1, \ldots, n),$$

(20)