10 Days

Stage 16 Closure of Posterior Neuropore; Hind Limb Bud and Tail Bud
10 Days, 30-34 Somites, 3.1-3.9 mm (fresh)

External Shape

Some typical features of stage 16 are represented in Fig. 134. The hind limb bud becomes visible as a distinct bulge at the level of the 23rd-28th somite. The tail rudiment appears as a short stump (Fig. 127). The surfaces of the third and fourth branchial bars are distinctly concave, in contrast to the second. In this way the formation of the cervical sinus is initiated. The lens plate is usually slightly indented (Figs. 129–131). This corresponds to the early horizon XIV of Streeter. Lens development seems to be slightly advanced in mouse compared to human embryos. The olfactory placode is clearly indented, and is also slightly advanced in development compared to the human embryos.

The otocyst is invariably closed. It is no longer spherical, but more or less pear-shaped in its dorsal segment (Fig. 127).

The posterior neuropore begins to close.

Length. In the unfixed state, the overall length varies between 3.3 and 3.9 mm.

Circulatory System

The cardinal veins may be clearly recognized in intact embryos (Fig. 129). The heart forms a prominent bulge in the vicinity of the branchial bars. The structure of the heart is essentially the same as in stage 17 for which a detailed reconstruction is represented in Fig. 148.

Intestinal Tract

The most conspicuous change in this age group is the formation of the lung anlage (Fig. 132): the laryngo-tracheal groove branches from the esophageal gut and the two primary bronchi sprout out in a T-like manner (Figs. 132, 133). The development of the intermediate portion of the intestinal tract was shown in Fig. 123. The hindgut still has the same appearance as in Fig. 126.

Urogenital System

The nephrogenic cord is now widely separated from its origin in the somite stalks. In the pronephric region, anterior to the 12th somite, only small clusters of cells are visible, and there is no structural organization. At the level of the 12th somite, spherical groups of nephrogenic cells may be recognized. They are arranged as vesicles at the level of the 13th to the 15th somite (Fig. 135). Generally, two such vesicles will form in each segment. Maturation proceeds slowly: at the 32 somite stage, the nephrotome of the 20th somite is not much more developed than in the 26-somite stage (Fig. 135). In one 26-somite embryo, there is a peritoneal funnel. There are no mesonephric glomerula at this stage.
The Wolffian duct is recognizable in the younger specimen examined, and it extends from the 13th to the 26th somite. In the older specimen, it has already reached the cloaca. At the point of contact, numerous pycnotic nuclei may be seen.

Primordial germ cells [103] can be seen as large cells containing much alkaline phosphatase. Some are already situated within the genital ridge, on both sides of the dorsal mesenteric attachment.

Central Nervous System

In most cases the neural tube is now completely closed. Compared to the human embryo of similar somite number, closure is delayed in mice. As an example, specimen KT 939/4 has 32 somites, and its posterior neuropore has just closed.

The separation and differentiation of the otic vesicle behaves nearly exactly the same in mice as in humans. The vesicle is now closed and completely separated from the epidermis. The endolymphatic appendage is marked off as a dorsal recess from the main cavity of the vesicle, giving it a more elongated appearance.

The olfactory placode is considerably thickened and slightly indented.

The ganglia of the cranial nerves appear as distinct blastemal condensations. In transparent specimens, the large trigeminal ganglion can easily be recognized, situated just anterior to the pontine flexure of the brain tube (Fig. 127). Posteriorly, the spinal ganglia are differentiated from the neural crest.

In older specimens, the lens plate is slightly indented (Fig. 130).

Placenta

The loosely structured chorionic plate is traversed by the allantoic vessels. The ectoplacental plate is transformed into the labyrinth, and its margins are turned inward (Fig. 136). Consequently, the transition zone of the two yolk sac layers is also turned inward. The yolk sac cavity will later communicate here with the interplacental cavities, which develop secondarily as small clefts within the labyrinthine cell mass after disappearance of the original ectoplacental cavity [33].

The zone of "giant cells" (Fig. 136A) borders the decidua, which has many multinucleate cells in this region. Toward the mesometrium, the deciduous cells penetrate the myometrium and start to form the "metrial gland" [25].

<table>
<thead>
<tr>
<th>Material</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>KT 938-40</td>
<td>10 days</td>
</tr>
<tr>
<td></td>
<td>4 with 25, 26, 27 and 28 somites (listed previously).</td>
</tr>
<tr>
<td></td>
<td>1 with 32 somites. Posterior neuropore just closed.</td>
</tr>
<tr>
<td></td>
<td>1 with 32 somites. Posterior neuropore still open.</td>
</tr>
<tr>
<td></td>
<td>1 with 34 somites. Posterior neuropore closed.</td>
</tr>
</tbody>
</table>