After discussing the state of the art in the field of robotics, the author presents some aspects of the economics of robots. The paper then proceeds with a detailed study of the societal impact of robots and stresses the social advantages of their use.

INTRODUCTION
The call for papers of the Fourth International Congress of Cybernetics and Systems shows a predilection to the interests of 'SOCIETY'. Therefore, it may be appropriate for a roboticist to tie robotics and society together in an overview paper.

Long before there were any robots, there had already been much speculation on the interaction between robots and humans. In 1922, Capek foretold of doom for mankind at the hands of robots; and then in 1940, Asimov predicted a benign class devoted to the service of mankind.

So much for science-fiction. Today, we must face the reality of robots. They are here, they are working in industry; and, their acceptance is burgeoning. Will they be malevolent or benevolent?

First let us look at the characteristics of available robots; then examine what they are doing in industry, next determine the societal impact to date; and, finally, extrapolate to what is in store.

STATE OF THE ART
Through the 1960's, Unimation Inc. was rather alone with a commercially sound product, but by 1976 there had been some 150 attempts to develop robots of one kind or another. Of these efforts, over 50% have been abandoned; and, but a handful of developers have gone into series production and have practical field installations.

There is no need to be exhaustive in depicting what is available. Industrial robots tend to emulate one or another of those shown in Figs. 1, 2, and 3.

The Unimate of Fig. 1 is a digitally controlled machine which can safely be deemed the most successful currently on the market. Over 2000 have been sold and many have logged more than 60,000 hours on the job.

The Trallfa of Fig. 2 is an analog controlled robot that was developed with a specialized role in mind. Over 200 Trallfa's are engaged in spray painting applications.

The Auto-place of Fig. 3 is a 'pick and place' robot with mechanically adjustable travel and limited motion sequences. It is much less expensive than the Unimate or the Trallfa and is most often applied as an automation system component. Over 300 have been sold.

Industrial robots already enjoy a broad range of applications including all those listed in Fig. 4.