5

Heart: Contraction, Conduction, and Electrocardiography

P. D. Sturkie

THE CARDIAC CYCLE 103

FACTORS AFFECTING HEART RATE 103

Normal heart rates
- In embryos
- In adults

Neural control
- Center for heart rate
- Cardiac nerves
- Reflex changes in heart rate

Age and heart rate
Effects of light and ambient temperature
Heart rate and drugs

CONTRACTILITY 110

- Embryos
- Adults
- Contractility in isolated hearts

WORK OF THE HEART 111

ELECTROPHYSIOLOGY AND ELECTROCARDIOGRAPHY 111

Anatomy of specialized conducting system
- The AV node
- The AV bundle

Action potentials and spread of electrical excitation
- In embryos
- In adults

The electrocardiogram
- Recording methods

Characteristics of the normal bird electrocardiogram
- Results from different leads
- Intervals
- Amplitude
- Electrical axis
- Sex differences in the ECG

Abnormal Electrocardiograms
- Mineral and vitamin deficiencies
- Excess potassium and cadmium
- Isoproterenol necrosis
- Diseases and ECG's

REFERENCES 120
THE CARDIAC CYCLE

The sequence of events occurring in a complete heartbeat, a cardiac cycle, includes mechanical contraction of the atria and ventricles (systole) and relaxation of the heart muscle (diastole). This sequence is followed by filling of the ventricles (diastasis). Accompanying these events are changes in volume and pressure in the atria and ventricles.

The contraction phase in mammals is normally the shorter phase and varies little with heart rate, but ventricular relaxation varies greatly and inversely with heart rate. Very little work has been conducted on these events in the avian cardiac cycle, but there is no reason to expect major differences between birds and mammals; the pressure-flow curve of the left ventricle of a duck (Jones and Johansen, 1972) is much like the mammalian one in appearance. The actual pressures reached have been discussed in Chapter 4. Langille and Jones (1975) reported that in the Pekin duck contraction occurred synchronously in the right and left ventricles. At a mean heart rate of 219 beats/min, ventricular systole comprised 44 percent of the cardiac cycle, but the duration of systole in the right ventricle was 30 percent greater than in the left ventricle.

FACTORS AFFECTING HEART RATE

Small birds and mammals usually have higher heart rates than large ones, but there are exceptions.

Actually most heart rates previously determined (see Table 5–1) have been on birds restrained in different ways and degrees. It is now known that restraint influences heart rate considerably, probably in two ways. The initial excitement attending restraint increases heart rate and sympathetic discharge directly (Cain and Abbott, 1970; Cogger et al., 1974) and continued restraint up to 3 hr causes a progressive decrease in blood pressure and an increase in heart rate (reflexly; Whittow et al., 1965). When birds are allowed to move around (telemetry) or are only partially restrained, heart rates are much lower and probably represent the normal resting rates.

Normal Heart Rates

The heart rates of several adult species are shown in Table 5–1; those for embryos are given in Table 4–2 (Chapter 4).

In embryos. Embryonic chick heart rates have been determined by Girard (1973) (see Table 4–2), by Evans (1972), and by Soliman and Huston (1972), who have described methods of recording embryonic rates directly through the egg shell. These rates have been recorded from day 3 to hatching time and afterwards and range from 138 per minute at 3 days to 221 per minute on the twentieth day (Girard, 1973). The figures found by Soliman and Huston (through the egg shell) range from 218 to 324 per minute during the same periods. Differences in the handling temperature of egg and embryos may have accounted for much of this difference.

In adults. It is apparent that adult heart rates vary considerably between and among species. Much of this variation is attributed to variation in tone or restraint of the cardioaccelerator (CA) and cardioinhibitory nerves (vagus) to the heart; the factors influencing the variation are discussed below.

Neural Control

Center for heart rate. There is evidence for a cardioinhibitory center in the medulla (Cohen et al., 1970). The cells involved have their greatest