10 Peroxisome Proliferation and Hepatocarcinogenesis

B. G. Lake

10.1 Introduction .. 173
10.2 Characteristics of Hepatic Peroxisome Proliferation in Rodents . . 174
10.3 Rodent Liver Peroxisome Proliferators 175
10.4 Hepatocarcinogenicity of Rodent Peroxisome Proliferators 178
10.5 Mechanisms of Peroxisome Proliferator-Induced Hepatocarcinogenesis .. 179
 10.5.1 Oxidative Stress .. 180
 10.5.2 Cell Replication .. 184
 10.5.3 Promotion of Spontaneous Preneoplastic Lesions 186
 10.5.4 Apoptosis .. 186
10.6 Species Differences in Hepatic Peroxisome Proliferation 187
10.7 Conclusions .. 190
References .. 192

10.1 Introduction

Peroxisomes (or “microbodies”) are single membrane-limited cytoplasmic organelles present in the cells of animals, plants, fungi and protozoa. They are characterised by their content of catalase and a number of hydrogen peroxide-generating oxidase enzymes (Cohen and Grasso 1981; Reddy and Lalwani 1983). Like mitochondria, peroxisomes contain a complete fatty acid β-oxidation cycle (Lazarow and DeDuve 1976). In rat liver peroxisomes are normally spherical or oval in shape, approximately 0.5 μm in diameter and contain a finely granular matrix with a crystalline nucleoid core (Cohen and Grasso 1981).
Table 1. Some characteristics of peroxisome proliferation in rat and mouse liver

<table>
<thead>
<tr>
<th>Liver weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Liver enlargement due to both hepatocyte hyperplasia and hypertrophy</td>
</tr>
<tr>
<td>2. Increased replicative DNA synthesis (may be either transient or sustained)⁹</td>
</tr>
</tbody>
</table>

Morphological changes

1. Increased number and size of peroxisomes
2. Many “coreless” peroxisomes observed⁶
3. Increased smooth endoplasmic reticulum
4. Lysosomal changes and lipofuscin deposition⁹
5. Liver nodules and hepatocellular carcinoma⁹

Biochemical changes

1. Selective induction of peroxisomal enzymes (e.g. marked induction of peroxisomal fatty acid β-oxidation enzymes but only a small increase in catalase activity)
2. Induction of microsomal fatty acid (ω-1)- and particularly ω-oxidising enzyme activities (due to induction of cytochrome P-450 isoenzymes in the CYP4A subfamily)
3. Induction of carnitine acetyltransferase activity
4. Increase in an 80-kDa molecular weight polypeptide (due to induction of component enzymes of the peroxisomal fatty acid β-oxidation cycle)
5. Induction of cytosolic epoxide hydrolase
6. Inhibition of GSH peroxidase, GSH S-transferase and superoxide dismutase activities

For further details see Bentley et al. (1993); Cohen and Grasso (1981); Lake (1993); Lock et al. (1989); Moody et al. (1991); Reddy and Lalwani (1983) and Stott (1988).

GSH, glutathione.

⁹Depends on test compound, dose and duration of treatment.

⁶Normal rat and mouse liver peroxisomes contain a crystalline nucleoid core consisting of insolubilised urate oxidase.

10.2 Characteristics of Hepatic Peroxisome Proliferation in Rodents

A wide variety of chemicals have been shown to produce liver enlargement, peroxisome proliferation and induction of peroxisomal and microsomal fatty acid-oxidising enzyme activities in rodents (Bentley et al. 1993; Cohen and Grasso 1981; Lake and Lewis 1993; Lock et al. 1989; Moody et al. 1991; Reddy and Lalwani 1983; Stott 1988). Some characteristics of peroxisome proliferation in rat and mouse hepatocytes are shown in Table 1. Liver enlargement is due to both hyperplasia and hypertrophy, and