Chapter 1
Elements of Map-Scale Structure

1.1 Introduction

The primary objective of structural map making and map interpretation is to develop an internally consistent three-dimensional picture of the structure that agrees with all the data. This can be difficult or ambiguous because the complete structure is usually undersampled. Thus an interpretation of the complete geometry will probably require a significant number of inferences, as, for example, in the interpolation of a folded surface between the observation points. Constraints on the interpretation are both topological and mechanical. The basic elements of map-scale structure are the geometries of folds and faults, the shapes and thicknesses of units, and the contact types. This chapter provides a short review of the basic elements of the structural and stratigraphic geometries that will be interpreted in later chapters, reviews some of the primary mechanical factors that control the geometry of map-scale folds and faults, and examines the typical sources of data for structural interpretation and their inherent uncertainties.

1.2 Representation of a Structure in Three Dimensions

A structure is part of a three-dimensional solid volume that probably contains numerous beds and perhaps faults and intrusions (Fig. 1.1). An interpreter strives to develop a mental and physical picture of the structure in three dimensions. The best interpretations utilize the constraints provided by all the data in three dimensions. The most complete interpretation would be as a three-dimensional solid, an approach now possible with 3-D computer graphics programs. Two-dimensional representations of structures by means of maps and cross sections remain major interpretation and presentation tools. When the geometry of the structure is represented in two dimensions on a map or cross section, it must be remembered that the structure of an individual horizon or a single cross section must be compatible with those around it. This book presents methods for extracting the most three-dimensional interpretive information out of local observations, for example at wells (Fig. 1.1), and for using this information to build a three-dimensional interpretation of the whole structure.
Fig. 1.1. Geometry of a structure in three dimensions. \(W \) Well location where the structure is sampled.

Fig. 1.2. Structure contours. \(a \) Lines of equal elevation on the surface of a map unit. \(b \) Lines of equal elevation projected onto a horizontal surface to make a structure contour map.

1.2.1 Structure Contour Map

A structure contour is the trace of a horizontal line on a surface (e.g., on a formation top or a fault). A structure contour map represents a topographic map of the surface of a geological horizon (Fig. 1.2). The dip direction of the surface is perpendicular to the contour lines and the dip amount is proportional to the spacing between the contours. Structure contours provide an effective method for representing the three-dimensional form of a surface in two dimensions. Structure contours on a faulted horizon (Fig. 1.3) are truncated at the fault.