2. Unstable Diatomic Molecule

In a diatomic molecule, the interaction between the atoms depends on their electronic configuration. It is conceivable that a molecule is stable if one of the atoms is electronically excited, and unstable if both atoms are in their ground state. We study here such a scheme, and we focus in particular on the dissociation of the molecule when the initially excited atom decays to its ground state.

2.1 Preliminaries

2.1.1. Consider a particle of mass M moving along the x axis and placed in the potential $V_1(x)$:

$$V_1(x) = +\infty \quad \text{for } x \leq x_0$$

$$= 0 \quad \text{for } x > x_0.$$

Let $\varphi_k(x)$ be a stationary solution of the Schrödinger equation with energy E. It can be written, for $x > x_0$, as

$$\varphi_k(x) = e^{ik(x-x_0)} + B e^{-ik(x-x_0)}.$$

(a) Express k in terms of E.
(b) What is the value of $\varphi_k(x)$ for $x \leq x_0$?
(c) What is the value of B?
(d) Write the general solution of the Schrödinger equation in terms of the functions $\varphi_k(x)$.

2.1.2. We now consider a particle of mass M moving along the x axis and placed in the potential $V_2(x)$:

$$V_2(x) = +\infty \quad \text{for } x \leq x_0$$

$$= V_0 + M\omega_0^2 x^2/2 \quad \text{for } x > x_0.$$

where V_0 is a constant.

(a) What is the wave function for $x \leq x_0$?
(b) Express the eigenfunctions $\chi_n(x)$ of the Hamiltonian in terms of the normalized Hermite functions $\Phi_n(y) = c_n e^{y^2/2} \frac{d^n}{dy^n} e^{-y^2}$.
(c) What are the corresponding energy levels?
2.2 A Molecule Which Is Only Stable in Its Excited States

Consider a diatomic molecule XY. Let x be the distance between the nuclei (or between the centers of gravity) of the two atoms X and Y.

The potential energy between the two atoms depends on the excitation state of the electrons. Let $V(x)$ be this potential energy (for a given electronic state). Then the (lowest) energy levels of the relative motion of the two atoms are obtained by solving the one-dimensional Schrödinger equation

$$-\frac{\hbar^2}{2M} \frac{d^2}{dx^2} \varphi(x) + V(x) \varphi(x) = E \varphi(x),$$

(2.1)

where M is the reduced mass $M = M_X M_Y/(M_X + M_Y)$.

Let $V = V_g(x)$ be the potential energy when the electrons are in the ground state and $V = V_e(x)$ the potential energy when one electron is in its first excited state. The molecule is assumed to be such that $V_e(x)$ has a minimum at $x = x_0$ whereas $V_g(x)$ is a decreasing function of x, such as shown in Fig. 2.1.

![Potential energy](image)

Fig. 2.1. Variations of the two potentials V_g and V_e as a function of the interatomic distance x.

2.2.1. Indicate without calculation whether the stationary states of equation (2.1) are bound states or scattering states (in which case the molecule does not have a stable configuration) in the two cases $V = V_e(x)$ and $V = V_g(x)$.

What conclusion may be drawn concerning the stability, or the existence, of the molecule XY when the electrons are in the ground state or in the excited state?

In your opinion, of the three molecules N_2, He_2, HCl, which one could be described by this type of model?