Examples of Optimal Control Problems on Compact Lie Groups

19.1 Riemannian Problem

Let M be a compact Lie group. The invariant scalar product $\langle \cdot, \cdot \rangle$ in the Lie algebra $\mathcal{M} = T_{\text{Id}}M$ defines a left-invariant Riemannian structure on M:

$$\langle qu, qv \rangle_q \overset{\text{def}}{=} \langle u, v \rangle, \quad u, v \in \mathcal{M}, \quad q \in M, \quad qu, qv \in T_qM.$$

So in every tangent space T_qM there is a scalar product $\langle \cdot, \cdot \rangle_q$. For any Lipschitzian curve

$q : [0, 1] \rightarrow M$

its Riemannian length is defined as integral of velocity:

$$l = \int_0^1 |\dot{q}(t)| \, dt,$$

$$|\dot{q}| = \sqrt{\langle \dot{q}, \dot{q} \rangle}.$$

The problem is stated as follows: given any pair of points $q_0, q_1 \in M$, find the shortest curve in M that connects q_0 and q_1.

The corresponding optimal control problem is as follows:

$$\dot{q} = qu, \quad q \in M, \quad u \in \mathcal{M}, \quad q(0) = q_0, \quad q(1) = q_1, \quad q_0, q_1 \in M \text{ fixed},$$

$$l(u) = \int_0^1 |u(t)| \, dt \rightarrow \text{min}.$$

First of all, we prove existence of optimal controls. Parametrizing trajectories of control system (19.1) by arc length, we see that the problem with unbounded admissible control $u \in \mathcal{M}$ on the fixed segment $t \in [0, 1]$ is equivalent to the problem with the compact space of control parameters $\mathcal{U} = \{|u| = 1\}$ and free terminal time. Obviously, afterwards we can extend the set of control
parameters to \(U = \{ \| u \| \leq 1 \} \) so that the set of admissible velocities \(f_{U}(q) \) become convex. Then Filippov's theorem implies existence of optimal controls in the problem obtained, thus in the initial one as well.

By Cauchy-Schwartz inequality,

\[
(l(u))^2 = \left(\int_{0}^{1} |u(t)| \, dt \right)^2 \leq \int_{0}^{1} |u(t)|^2 \, dt,
\]

moreover, the equality occurs only if \(|u(t)| = \text{const} \). Consequently, the Riemannian problem \(l \rightarrow \min \) is equivalent to the problem

\[
J(u) = \frac{1}{2} \int_{0}^{1} |u(t)|^2 \, dt \rightarrow \min. \tag{19.4}
\]

The functional \(J \) is more convenient than \(l \) since \(J \) is smooth and its extremals are automatically curves with constant velocity. In the sequel we consider the problem with the functional \(J \): (19.1)–(19.4). The Hamiltonian of PMP for this problem has the form:

\[
h_{u}(a, q) = (\dot{a}, qu) + \frac{\nu}{2} |u|^2 = (a, u) + \frac{\nu}{2} |u|^2.
\]

The maximality condition of PMP is:

\[
h^{\nu}_{u(t)}(a(t), q(t)) = \max_{v \in \mathcal{M}} ((a(t), v) + \frac{\nu}{2} |v|^2), \quad \nu \leq 0.
\]

(1) Abnormal case: \(\nu = 0 \).

The maximality condition implies that \(a(t) \equiv 0 \). This contradicts PMP since the pair \((\nu, a) \) should be nonzero. So there are no abnormal extremals.

(2) Normal case: \(\nu = -1 \).

The maximality condition gives \(u(t) \equiv a(t) \), thus the maximized Hamiltonian is smooth:

\[
H(a) = \frac{1}{2} |a|^2.
\]

Notice that the Hamiltonian \(H \) is invariant (does not depend on \(q \)), which is a corollary of left-invariance of the problem.

Optimal trajectories are projections of solutions of the Hamiltonian system corresponding to \(H \). This Hamiltonian system has the form (see (18.18)):

\[
\begin{cases}
\dot{q} = qa, \\
\dot{a} = [a, a] = 0.
\end{cases}
\]

Thus optimal trajectories are left translations of one-parameter subgroups in \(M \):

\[
q(t) = q_{0} e^{ta}, \quad a \in \mathcal{M},
\]

recall that an optimal solution exists. In particular, for the case \(q_{0} = \text{Id} \), we obtain that any point \(q_{1} \in M \) can be represented in the form