The Canadian Mathematical Congress held its meeting last summer in Edmonton, Alberta. Professor Dixmier of Paris lectured on Algèbres de von Neumann. Dr. Zassenhaus' lectures on Group Theory started with von Neumann's definition of infinitesimal operators and their commutators. Dr. Tucker of Princeton lectured on the Theory of Games – another subject which was partially founded by Dr. von Neumann and greatly enriched by his ideas. Von Neumann made important contributions to all parts of mathematics, excepting number theory and topology, and he left his mark on theoretical physics and economics. His work during the war was vital for the success of several projects, and his contributions to the national welfare and national security did not cease, but rather intensified with the termination of the war. He died as a member of the U. S. Atomic Energy Commission.

John von Neumann was born on December 28, 1903, the son of a well-to-do banker in Budapest, Hungary. He was a student of the Lutheran High School of his native city. This school was, at that time, perhaps the best high school of Hungary and probably also one of the best of the world. At least two teachers carried out independent research work, though on a modest scale; the majority of the teachers had an abiding interest in teaching and the guidance of the young men under their tutelage. Von Neumann's talents were soon recognized by the staff and the mathematics teacher, L. Ratz, to whom the present writer is also deeply indebted, took "Jancsi" (nickname for John) under his wing, gave private lessons to him, and introduced him at the University. The relations between University and at least some of the high schools were quite close, and von Neumann became well known in the flourishing circle of Budapest's mathematicians even before he was graduated from high school. The spiritual father of many Hungarian mathematicians, L. Fejer, coined the phrase "our country's greatest Jancsi" and this appellation stuck with von Neumann throughout his life.

In school and among his colleagues, Jancsi was somewhat retiring. He participated in the pranks of the class, but a bit halfheartedly, just enough to avoid unpopularity. He had a few close friends and was respected by all – intellectual strength was recognized and approved of by the student body, if not always envied. Jancsi loved to talk, and to talk about mathematics, even at that early age, and his friends often arrived late at home after a walk with him.

After his graduation from high school, von Neumann studied chemistry for two years at the University of Berlin and for two years in Zurich. The study of
chemistry was a kind of insurance against the uncertainties of a career in mathematics. For a mathematician, only teaching positions appeared to be available and there were very few of these at the University. The salary at the high schools did not come up to the standards of his banker parents. Hence, a career in chemistry was decided upon as a compromise between Jancsi's scientific inclinations and the harsh realities as seen by his family and also by himself. However, much of the time of the chemistry student was spent in the company of the mathematicians, of Berlin and of Zurich, and the attachment of the young student of chemistry to his subject of study was never very intimate. He finished his studies in chemistry, but took his Ph.D. in mathematics in Budapest during the same year in which his diploma in chemistry was granted in Zurich. Evidently, a Ph.D. thesis and examination did not constitute an appreciable effort.

After receiving his Ph.D., von Neumann continued his studies in Göttingen, Hamburg, and became Privatdozent in Berlin in 1927. Chemistry was quietly dropped and he turned increasingly toward mathematics and theoretical physics. He published some of his most lasting contributions during this period.

In 1929 von Neumann was invited to spend a term in Princeton. America proved to be a love at first sight to him and he took to the social and scientific atmosphere of Princeton as a duck takes to water. The invitation for a term was soon extended to a half-time appointment and, in 1931, to a full-time professorship. He and his wife, the former Marietta Kövesi, whom he married just before his first visit to Princeton, acquired many close friends in Princeton whose affection did not change for either husband or wife in the many years to come. Marietta's parties, and the gay atmosphere of their house, were proverbial in Princeton and a favored topic of conversation long after they separated in 1937. They had one daughter, Marina, who is now married and lives in Princeton.

In 1933, soon after the foundation of the Institute for Advanced Study, von Neumann was asked to join its faculty. The Institute was, at that time, a grandiose experiment in higher learning and research in this country, fathered by A. Flexner and O. Veblen and their forward-looking friends who provided the funds for the venture. Von Neumann's invitation to the Institute — a thirty-year-old young man among some of the most distinguished and recognized mathematicians of the country — was not only a signal tribute to his abilities, but also manifested his complete integration into American life. He spent the rest of his scientific career at the Institute. It was still before the war that he married Klari Dan, whom he met in Hungary, and who survives him.

Von Neumann's activities during the war were manifold. The accomplishment which became most famous was his espousal of the implosion method for bringing nuclear fuel to explosion. He thought of this method independently of others, no doubt as a result of his intimate knowledge of shaped charges. Von Neumann did not sever his connections with the Services and with the work on nuclear energy at the cessation of the hostilities, but devoted much of his time, his energy, his ingenuity, and his judgment to an effort to strengthen the armed power of his adopted country. His last years were entirely devoted to work for the Government, and he died, after several years of service, as a member of the U. S. Atomic Energy Commission, on February 8, 1957.