Some recent results in baryon chiral perturbation theory

Ulf-G. Meißner

IKP, FZ Jülich, D-52425 Jülich, Germany and ITP, Karl-Franzens-Universität Graz, A-8010 Graz, Austria

Received: 30 September 2002
Published online: 22 October 2003 - © Società Italiana di Fisica / Springer-Verlag 2003

Abstract. I present and discuss recent results on elastic pion-nucleon scattering and near-threshold neutral-pion electroproduction off deuterium obtained in the framework of chiral perturbation theory.

1 Introduction

Chiral perturbation theory (CHPT) is a well established and systematic tool to analyze in a model-independent manner the reactions between pions, nucleons and photons (or other external sources), based on a systematic power counting in terms of small external momenta and quark (pion) masses. In this paper I want to present new results on isospin violation in elastic pion-nucleon scattering and neutral pion electroproduction off deuterium. The latter study was partly motivated by the dramatic difference between the prediction for the S-wave cross-section in [1] and the recent MAMI experiment [2]. As it turns out, this puzzle has been resolved as explained below.

2 Isospin violation in pion-nucleon scattering

We first want to apply CHPT to one of the most studied processes, elastic pion-nucleon scattering. More precisely, we will consider systematically effects of isospin violation (IV) due to the light quark mass difference, $m_u \neq m_d$, and electromagnetism, $q_u \neq q_d$. Before discussing in some detail isospin violation in πN scattering, a few general remarks are in order. In QCD plus QED, we have two sources of isospin violation. In QCD, the light-quark mass difference leads to isovector terms, as reflected in the quark mass term (for two flavors)

$$\mathcal{H}_{\text{QCD}}^\text{mass} = m_u \bar{u}u + m_d \bar{d}d,$$

where the last term is clearly of isovector nature leading to strong IV. Naively, one could expect huge IV effects since $|(m_u - m_d)/(m_u + m_d)| \approx 1/3$. However, the scale one should compare to is the hadronic one, so that one indeed anticipates very small effects, $(m_u - m_d)/\Lambda_H < 1\%$. Only in processes involving neutral pions one can expect much bigger effects [3]. The other source of IV is electromagnetism (em). Hadron mass shifts due to virtual photon exchange between quarks can be estimated as $\delta m \approx \alpha_{\text{em}} \cdot \Lambda_{\text{QCD}} \cdot \mathcal{O}(1) \sim \text{few MeV}$. In fact, typical em mass splittings in meson and baryon multiplets are of this order. Therefore, these two types of IV have to be considered consistently. This can be done by including virtual photons in the chiral effective Lagrangian of pions and nucleons, treating the electric charge e as another small parameter. This was done for the case of pion-nucleon scattering in the framework of heavy-baryon chiral perturbation theory to third order in ref. [4], leading to a new phase shift analysis (valid for pion lab momenta below 100 MeV as deduced from the isospin symmetric fourth-order calculation [5]). The resulting S- and P-wave phases for the three measured physical channels $\pi^\pm p \rightarrow \pi^\pm p$ and $\pi^- p \rightarrow \pi^0 n$ (charge exchange) are shown in fig. 1. CHPT does not leave any doubt about the correct definition of the hadronic masses of pions and nucleons and allows to extract the strong part of the scattering amplitude in a unique way. At this order, there is only one strong IV-violating operator whose strength can be fixed from the np mass difference. The em corrections are a bit more subtle. First, there are one- and two-photon exchanges, the latter amount to a few percent correction for the kinematics pertinent to the existing data. More precisely, for pion lab momenta q_π, two-photon exchange is suppressed compared to one-photon exchange by a factor $e^2 M_\pi/(32q_\pi) \leq 0.04$ for $|q_\pi| \geq 10 \text{ MeV}$. Then there are soft photon contributions in terms of loops and external leg radiation. Only the sum of these is IR finite and their contribution depends of course on the detector resolution. We have used $\Delta E_r = 10 \text{ MeV}$. In addition, there are hard photon contributions encoded in contact

C. Elster et al., Refered and selected contributions from International Conference on Quark Nuclear Physics © Springer-Verlag Berlin Heidelberg 2004
terms with undetermined low-energy constants (LECs). After determining the unknown LECs by a fit to experimental data, one can switch off all electromagnetic interactions and describe QCD with unequal up- and down-quark masses and $e^2 = 0$. The so-determined strong phase shifts (mostly) agree with those of previous works [6-9] in the P-waves, but one finds a sizeably different behavior in the S-waves (in particular for $\pi^- p$ elastic scattering), compare fig. 1. This difference can be traced back to the inclusion (in CHPT) or omission (in other approaches) of non-linear photon-pion-nucleon couplings, i.e. vertices of the type $\bar{N}N\pi\pi\gamma$. Such vertices are a consequence of chiral symmetry and thus must be included. One should investigate how such non-linear couplings can be included in the often used dispersion theoretical approaches to em corrections [10]. Given the hadronic amplitudes constructed in [4], one can address the question of isospin violation by studying the usual triangle relation involving elastic $\pi^\pm p$ scattering and the charge exchange reaction (for a general discussion of such triangle ratios, see [11] and references therein). An important advantage of the CHPT calculation lies in the fact that one can easily separate dynamical from static isospin breaking, the latter are due to hadron mass differences. Dynamical isospin breaking only occurs in the S-wave and is very small, $\sim 0.75\%$, in agreement with the estimate given above. Static effects do not increase the size of isospin violation in the S-wave significantly; by no means can one account for the reported 7 % isospin breaking [12,13]. These are presumably due to a mismatch between the models for the strong and the em interactions used in these works. Note also that one finds large error bars on the parameter values in the CHPT analysis. In order to improve this situation, one would like to fit to more experimental data. However, a third-order CHPT calculation allows to describe scattering data for pion laboratory momenta not much higher than 100 MeV, a region where the data situation is not yet as good as one would hope. A fourth-order calculation would certainly allow to fit to data higher in energy, but, on the other hand, would also introduce many more unknown coupling constants. Since isospin breaking effects are expected to be most prominent in the low-energy region, one might question the usefulness of extending the analysis to full one-loop (fourth) order. Additional data for pion-nucleon scattering at very low energies would be very helpful in this respect. Also a combined fit to several reactions involving nucleons, pions, and photons, e.g. pion electro- and photoproduction, as well as $\pi N \rightarrow \pi\pi N$, would help in pinning down the fundamental low-energy constants more precisely.

3 π^0 electroproduction off deuterium

In [14], we have studied neutral-pion electroproduction off deuterium in the framework of CHPT at and above threshold. For doing that, we have developed a general multipole decomposition for neutral-pion production off spin-1 particles that is particularly suited for the threshold region and formulated in close analogy to the standard CGLN amplitudes for pion production off nucleons (spin-1/2 particles). A similar work was previously published in [15]. The interaction kernel and the wave functions are based consistently on chiral effective field theory. The kernel decomposes into a single scattering and a three-body contribution, cf. fig. 2. We have chirally expanded the various contributions working to first non-trivial loop