(13.4) If X is a finite CW complex with a weak n-dual D_nX, there is a canonical isomorphism

$$u' : \Omega_k(X) \cong \widetilde{\Omega}^{n-k-1}(D_nX).$$

Proof. We may confine ourselves to finite simplicial complexes X embedded as proper subcomplexes of S^n. Since X is contractible to a point in S there is a short exact sequence $0 \to \Omega^{n-k-1}(X) \to \Omega^n(S^n, X) \to \widetilde{\Omega}^{n-k}(S^n) \to 0$. There is also the exact sequence

$$0 \to \Omega_k(S^n \setminus X) \to \Omega_k(S^n \setminus X) \to \Omega_k(S^n) \to 0.$$ Duality yields a diagram

$$0 \to \Omega_k(S^n \setminus X) \to \Omega_k(S^n \setminus X) \to \Omega_k \to 0.$$ There is then a unique isomorphism $\Omega_k(S^n \setminus X) \cong \Omega^{n-k-1}(S^n, X)$ such that commutativity holds. Since $\Omega_k(D_nX) = \Omega_k(S^n \setminus X)$, we get an isomorphism $u' : \Omega_k(D_nX) \cong \Omega^{n-k-1}(X)$, which is sufficient to show (13.4).

CHAPTER II

Computation of the bordism groups

In the previous chapter, we have defined and characterized geometrically the homology theory $\{\Omega_*(X, A), \varphi_*, \partial\}$ of bordism. Thus the stage is set for their computation, at least in many cases. In order to compute, we use the powerful results of MILNOR (Ω_* has no odd torsion) and WALL (see section 14) on $MSO(k)$. In section 14 we prove that the bordism spectral sequence is trivial modulo the class of odd torsion groups. In section 15 it is proved that if X has no odd torsion then $\Omega_*(X) = \Sigma_{p+q=n} H_p(X; \Omega_q)$; in section 18 it is shown that if X has no torsion then $\Omega_*(X) \cong H_*(X; \mathbb{Z}) \otimes \Omega$ as an Ω-module.

Generalizing the Stiefel-Whitney numbers and the Pontryagin numbers of a manifold, in section 17 we define natural numerical invariants of maps $f : M^n \to X$. These are functions only of the bordism class of f. If all torsion of X consists of elements of order two, the bordism class of f is determined by the Whitney numbers and the Pontryagin numbers of f.

14. Triviality mod C

Denote by C the class of torsion groups having all elements of odd order. The fundamental result of this chapter is the following.

Theorem. For any CW pair (X, A) the bordism spectral sequence is trivial mod C.

P. E. Conner et al., *Differentiable Periodic Maps*
© Springer-Verlag Berlin Heidelberg 1964
The purpose of this section is to prove (14.1). We must show that the image of each $d^r_p: E^r_{p,q} \rightarrow E^r_{p-r,q+r-1}$ is an odd torsion group. We use in a basic way the following theorem of C. T. C. WALL [42], which is now assumed.

(14.2) Wall. The module $H^*(MSO(k); \mathbb{Z}_2)$ over the mod 2 Steenrod algebra is isomorphic in dimensions $<2k$ to a direct sum of Steenrod algebras $H^*(Z, m_i; \mathbb{Z}_2)$ and $H^*(Z, n_i; \mathbb{Z}_2)$.

Put in terms of spectra of § 12, $H^*(MSO; \mathbb{Z}_2)$ is isomorphic as a module over the Steenrod algebra to a direct sum of copies of $H^*(K(Z); \mathbb{Z}_2)$ and of $H^*(K(Z); \mathbb{Z}_2)$.

Proof of (14.1). Let $a \in H^m_{1}(MSO; \mathbb{Z}_2)$ denote the generator of one of the submodules of $H^*(MSO; \mathbb{Z}_2)$ isomorphic to $H^*(K(Z); \mathbb{Z}_2)$. The Bockstein $S_1^1: H^m_{1}(MSO; \mathbb{Z}_2) \rightarrow H^{m+1}_{1}(MSO; \mathbb{Z}_2)$ kills a. Hence the integral Bockstein $H^m_{1}(MSO; \mathbb{Z}_2) \rightarrow H^{m+1}_{1}(MSO; \mathbb{Z})$ maps a into an element a', a' of order two, which is zero when restricted mod 2. Hence $a' = 2b$ for some $b \in H^{m+1}_{1}(MSO; \mathbb{Z}_2)$. But additively $H^*(MSO(k); \mathbb{Z}_2) \cong \cong H^*(BSO(k); \mathbb{Z}_2)$ by the Thom isomorphism (11.2), and hence all 2-torsion consists of elements of order two by the results in § 10. Since $2a' = 0$, $a' = 2b$ it follows that $a' = 0$. Thus a is the restriction of an integral class $a \in H^m_{1}(MSO; \mathbb{Z}_2)$.

The elements a, a are represented by unique elements $\alpha_k \in H^k_{m_i}(MSO(k); \mathbb{Z}_2)$ and $a_k \in H^k_{m_i}(MSO(k); \mathbb{Z}_2)$ for $k > m_i$. For each $k > m_i$ there is a cellular map $I_k: MSO(k) \rightarrow K(Z, m_i + k)$, unique up to homotopy, with $I_k(\tau) = \alpha_k$, $\tau \in H^{m_i+k}(Z, m_i + k; \mathbb{Z}_2)$ the fundamental class. Also $I_k(\text{mod } 2) = a_k$.

The diagram

$$
\begin{array}{c}
SMSO(k) \longrightarrow MSO(k + 1) \\
\downarrow S_l \\
SK(Z, m_i + k) \longrightarrow K(Z, m_i + k + 1),
\end{array}
$$

where the horizontal maps are the spectrum maps, is then seen to be commutative up to homotopy.

Consider now a variant of the homology theory of § 12 based on the spectrum $K(Z)$. Define

$$iK_s(X, A) = \text{Dir Lim}_s \pi_{s+k}(X/A \wedge K(Z, m_i + k)).$$

It follows from § 12 that $iK_s(X, A) = H_s-m_i(X, A; \mathbb{Z}_2)$. There is a spectral sequence $\{iE_{p,q}^r\}$ for the homology theory $iK_s(X, A)$. We have $iE_{p,q}^1 = iK_{p+q}(X^p/X^{p-1}) \cong H_{p+q-m_i}(X^p, X^{p-1}; \mathbb{Z}_2)$. Hence $iE_{p,q}^1 = 0$ if $q \neq m_i$, $iE_{p,m_i} = C_p(X, A)$. It is also the case that $iE_{p,m_i} = H_s(X, A; \mathbb{Z}_2)$. Since there is just one non-zero fiber degree, the spectral sequence is trivial for $r \geq 2$. The maps $I_k: MSO(k) \rightarrow K(Z, m_i + k)$, all k, induce