11. CONSTRUCTION OF ELLIPTIC CURVES OF LARGE RANK

11.1. Néron’s specialisation theorem.

Let \(k \) be a number field and \(A \) an abelian variety over \(K = k(T_1, \ldots, T_n) \) where the \(T_i \) are indeterminates over \(k \). By a theorem of Néron ([N1]), \(A(K) \) is a finitely generated group.

Theorem. (Néron). There is an abelian variety \(A_t \) over \(k \), of the same dimension as \(A \), such that
\[
\text{rank} A_t(k) \geq \text{rank} A(K).
\]

The variety \(A_t \) is obtained by “specialising” \(A \). This is done as follows: since \(K \) is the function field of \(\mathbb{P}_n \) and \(A \) is defined over \(K \), \(A \) comes from some abelian scheme \(A_U \) over a non-empty open subset \(U \) of \(\mathbb{P}_n \). Let \(s_1, \ldots, s_n \in A(K) \) generate \(A(K) \). One can view the \(s_i \)'s as rational sections of the abelian scheme \(\pi : A_U \to U \). By replacing \(U \) by a smaller open set, one can also assume that the \(s_i \) are morphisms [in fact, such a replacement is not necessary: since \(U \) is smooth, the \(s_i \) can be proved to be everywhere regular on \(U \)]. Hence if \(t \) is any rational point of \(U \) and \(s \in A(K) \), \(s(t) \) is a well defined rational point of \(A_t = \pi^{-1}(t) \). The map \(s \mapsto s(t) \) is a homomorphism \(\phi_t : A(K) \to A_t(k) \).

The precise form of Néron’s theorem is:

Theorem. The set of \(t \in U(k) \) for which \(\phi_t \) is not injective is thin.

Therefore outside a thin set, \(\text{rank} A_t(k) \geq \text{rank} A(K) \).

We shall use the following criterion on abelian groups.

Criterion. Let \(\phi : M \to N \) be a homomorphism of abelian groups, and \(n \) an integer \(\geq 2 \). We assume that,
1) \(M \) is finitely generated,
2) \(M/nM \to N/nN \) is injective,
3) \(\phi \) is injective on the torsion group of \(M \),
4) \(\phi \) defines an isomorphism of \(M_n = \{ x \in M, nx = 0 \} \) onto \(N_n = \{ x \in N, nx = 0 \} \).

Then \(\phi \) is injective.

Proof.

The kernel \(I \) of \(\phi \) is of finite type from (1), and torsion free, from (3). We shall show that \(I = nI \), which implies \(I = 0 \).
Let $x \in I$. We have $\phi(x) = 0 \in nN$, therefore, from (2), $x \in nM$. We write $x = ny$, with $y \in M$. Then $n\phi(y) = \phi(x) = 0$, that is to say $\phi(y) \in N_n$. From (4), there is $z \in M_n$ with $\phi(z) = \phi(y)$. Since $nz = 0$, we have $x = n(y - z)$. But $y - z \in I$, therefore $x \in nI$.

Proof of Néron's theorem.

We use the criterion for $\phi_y : A(K) \to A_t(k)$, with an arbitrary choice of $n \geq 2$. Condition (1) is known. Condition (3) follows from a general fact on abelian schemes: if s is a section of order exactly n, $s(t)$ is also of order n provided that the residue characteristic at t does not divide n - but here we are in characteristic 0. (The n-division points give a sub-scheme A_n étale over U. A section of this scheme which is non-zero at the generic point is non-zero elsewhere.)

To check condition (4), we have to prove that there are no more n-division points in A_t than in A. Take the subscheme A_n which is the kernel of multiplication by $n : A \to A$. As it is étale over the base U, we can decompose it into a disjoint sum of irreducible subschemes

$$A_n = \bigsqcup B_\alpha.$$

Let d_i be the degree of the projection $B_i \to U$, and let I (resp. J) be the set of i's with $d_i = 1$ (resp. $d_i \geq 2$). If t is chosen outside the thin set $\bigcup_{i \in J} \pi(B_i(k))$, we have

$$|A_{t,n}(k)| = |I| = |A_n(K)|,$$

as desired.

To check condition (2), we have to show that, for t outside a suitable thin set, the map

$$A(K)/nA(K) \to A_t(k)/nA_t(k)$$

is injective. It is enough to prove that, for every $\sigma \in A(K)$, $\sigma \notin nA(K)$, there is a thin set Ω_σ such that $\sigma(t) \notin nA_t(k)$ for all $t \notin \Omega_\sigma$. (We construct this for a finite number of σ: some set of representatives of the classes modulo n).

The image of $\sigma : U \to A_U$ is a subvariety of the scheme A_U; let $V_{n,\sigma}$ be the inverse image by the morphism $n : A_U \to A_U$. Then $V_{n,\sigma}$ is a covering of U, and the hypothesis $\sigma \notin nA(K)$ translates to $V_{n,\sigma}$ having no rational section. We then take Ω_σ to be the image of the rational points of $V_{n,\sigma}(k)$. This concludes the proof.