Motor Evoked Potential Monitoring for the Surgery of Brain Tumours and Vascular Malformations

G. Neuloh and J. Schramm

Department of Neurosurgery, University of Bonn, Germany

With 14 Figures

Contents

Abstract .. 172
Introduction .. 173
 Direct Stimulation Mapping ... 173
 Evoked Potentials ... 174
 Motor Evoked Potentials .. 175
MEP Technique .. 176
 Stimulation ... 177
 Recording ... 183
 Safety and Anesthesia .. 184
 Equipment and Staffing .. 186
Neurophysiological Functional Mapping of the Pericentral Cortex 188
 SEP Phase Reversal ... 189
 Intraoperative Stimulation Mapping ... 193
 Extraoperative Mapping with Grid Electrodes .. 195
Principles of Clinical Application .. 196
 Indications for MEP Monitoring ... 196
 Interpretation of MEP Changes .. 197
 Correlation of Intraoperative MEP Changes and Motor Outcome 198
 Surgical Reactions to MEP Changes .. 200
 Influence of MEP Monitoring on Surgical Results and Outcome 201
Specific Applications .. 202
 Supratentorial Tumors and Vascular Malformations 202
 Central Tumors and AVMs ... 203
 Insular Tumors and Sylvian AVMs .. 204
 Infratentorial Surgery .. 208
 Indications for MEP Monitoring ... 208
 Impact on Surgical Strategy ... 208
 Clinical Experience with MEP Monitoring for Infratentorial Surgery 208
 Aneurysms .. 211
Abstract

Brain surgery incurs a significant risk of a new motor deficit in lesions within or adjacent to the motor areas and pathways which, for the patient, presents one of the most disabling complications of such operations.

It is a major concern of intracranial procedures to delineate and monitor motor regions in order to preserve their structural and functional integrity, while still achieving maximal cytoreduction.

The technique of motor evoked potential recording has had to be adapted to intraoperative recording conditions under general anaesthesia, but has been available for clinical use now for almost ten years. This contribution summarizes the current technique and related methods, as well as our clinical experience in some 400 cases of MEP monitoring in supratentorial tumors, lesions in and around the brainstem, and aneurysm surgery.

Intraoperative MEP recordings have been shown to reliably reflect an impending new motor deficit. Irreversible MEP deterioration heralds new paresis, and unaltered recordings predict preserved motor function. This is also true in aneurysm surgery where conventional SEP monitoring may yield false-negative results with regard to development of a new motor deficit. Moreover, if MEP deterioration can be reversed, or halted by early surgical intervention, the presence of only a transient motor deficit, or even the lack of a new postoperative deficit, indicates the success of the MEP monitoring method in the prevention of a significant motor impairment. Certain complicated lesions can only be operated on at all because MEP monitoring is available.

In conclusion, intraoperative MEP monitoring is a useful aid in brain surgery with which to avoid a new motor deficit without compromise to the surgical result. Controlled prospective studies will be required to verify the clinical value of the method.