Chemistry and Biology of the Starch Granule

By

N. P. BADENHUIZEN

Department of Botany, University of the Witwatersrand, Johannesburg

With 44 Figures

Contents

I. Introduction .. 2
II. The Natural Starch Granule 3
 A. General Considerations 3
 1. Microscopical .. 3
 2. Chemical ... 4
 3. Physico-chemical 7
 B. The Layers .. 11
 C. Compound Granules 15
III. Swelling Phenomena 17
 A. Mechanism of Swelling, and Influencing Factors 17
 B. Iodine and Spirals 19
 C. Swelling of Starch Granules 21
 1. Normal swelling of B-starches 21
 2. Phenomena due to reduced swelling power 24
 (a) Natural starches 25
 (b) Products with artificially reduced swelling power .. 27
IV. Enzymic Degradation of Starch 30
 A. Hydrolytic Enzymes 30
 1. The action of amylases 30
 2. Digestibility and corrosion 32
 B. Reversible Enzymic Degradation 36
 1. Macerans amylase 36
 2. Phosphorolysis 37
V. Starch Synthesis .. 38
 A. Synthesis in vitro 38
 1. Phosphorylases or P-enzymes 38
 (a) General .. 38
 (b) Primers 39
 (c) Inhibitors 39
 2. Branching enzymes or Q-enzymes 40
 (a) General .. 40
 (b) Substrates consisting of linear molecules 40
II, B, 2, b, δ: N. P. BADENHUIZEN, Chemistry and Biology of the Starch Granule

(c) The action of D-enzyme ... 41
(d) Activators for Q-enzymes ... 41
(e) Q-enzymes from different sources 42
(f) Mixtures of P- and Q-enzymes 42
B. Synthesis in vivo ... 42
1. Phosphorylases ... 42
 (a) Localisation in the cell ... 42
 (b) Factors influencing the phosphorylase test 44
 (c) Is phosphorylase always involved in starch synthesis? 46
2. Genetical aspects of chemical composition 48
VI. Growth of the Starch Granule 49
A. Plastids ... 49
B. Development of Starch Granules in Plastids 50
 1. General ... 50
 2. Changes during development 54
 (a) Changes in shape ... 54
 (b) Changes in structure .. 57
3. The presence and distribution of linear molecules in natural starch granules 58
 (a) Possible factors involved .. 58
 (b) Waxy starch granules with "blue centre spots" 59
Acknowledgements ... 61
Rückblick ... 61
References .. 64

I. Introduction

The study of the starch granule concerns biologists and chemists alike, and therefore it is continuously necessary to synthesize the results of both. Neglect of one or the other has led to extreme confusion in the past and the development of fantastic theories. With the advance of our knowledge it has become quite clear that the chemical analysis of isolated starch is one thing, but that synthesis and breakdown of starch in the living cell is quite another. In fact, we still know very little about the latter, which is directly linked with fundamental problems of cell differentiation. In most cases we cannot do very much with the chemical results when we try to apply them to the biology of the living cell. We meet here with intriguing problems, some of which are outlined below.

The starch granules as stored in various plants, have been described often (for drawings see e.g. GASSNER 1955). This article emphasizes the unusual and some less well known facts, because the deviation from the normal often opens the way to the solution of a problem.

It is essential that our ideas about the structure of the starch granules are critically reviewed from time to time. New tools and more careful experiments add continuously to our knowledge. Radioactive carbon and the electron microscope recently gave direct information about the development of starch granules. As in the case of cellulose, these methods were able to confirm conclusions already obtained from indirect evidence, but at the same time the interpretations often require the utmost care.

The factors determining shape, structure and chemical composition of